FINAL EXAM: POWER SYSTEM PROTECTION AND CONTROL (EE4040) Duration: 90 minutes – Open book exam

No. 01

Student name:

Signature:

Student ID:

Question 1: Explain meaning of voltage transformer's specification (*1 point*):

Voltage level (V)	Total core	Core 1	Core 2 & Core 3
$\frac{115000}{\sqrt{3}} : \frac{100}{\sqrt{3}} : \frac{100}{\sqrt{3}} : \frac{100}{\sqrt{3}}$	3	100VA; 0,2	200VA; 3P

Question 2: Calculate setting values for overcurrent protection of 110kV transformer:

Trans	former	rated p	ower: 3	2 MVA		Nguồn
Voltage level U1/U2/U3 (kV): 110/23/35			110/23/	35	$U_l(kV) \Box$	
Permi	ssible o	verload	l factor:	1,2		
Curre (kA)	nt meas	sured by	y BI1 wh	ien fault o	occurs at N3	BI ₁ 50 51 50N 51
	N ⁽³⁾			N ⁽²	2)	$U_3 (kV)$ S_{MBA}
	1,47			1,2	7	51 $N3$ BI_3
Curre (kA)	nt meas	sured by	y BI1 wh	ien fault o	occurs at N2	
N(3)	N(2)	N (1)	N(1,1)	3I ₀ fault type N ⁽¹⁾	3I ₀ fault type N ^(1,1)	$BI_2 = 51 + 51N$ $S = 6$ N_2
2,37	1,93	2,15	2,25	1,68	1,47	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
						51N 51 →

Require:

a. Determine current transformer ratios for BI1; BI2; BI3 (0,5 point) (Rated primary current of BI can be chosen as: 10 - 12,5 - 15 - 20 - 25 - 30 - 40 - 50 - 60 - 75A and its multiple of 10, 100, 1000 times).

0,5 1,2 giây giây

- b. Calculate pickup current and time delay for relay 2 & 3 (1 point)
- c. Evaluate minimum sensitivity of relay 2? Determine if this sensitivity of relay 2 meets regulation or not (*0,5 point*)?

Question 3: Calculate setting values for distance protection in following scheme:

Network rated voltage: 115kV

- a. Calculate setting values for 3 protection zones of distance protection (1,5 point)
- b. Assume that maximum line load is 300MVA with power factor $\cos\varphi=0.85$. Determine maximum resistive reach value of protection zone (*1,5 point*)

Question 4: Consider following differential protection scheme:

Given data:

- Rated current of side 1 is 100 (A) ; CT ratio (BI1) is 120/5
- Rated current of side 2 is 1000 (A) ; CT ratio (BI2) is 1000/5
- Maximum CT ratio error is 10%
- Voltage regulation range of transformer: ±9x1,78%
- Short-circuit voltage (percent) U_N%=10,5

Require:

- a. Evaluate maximum bias current during normal operation of transformer with permissible overload factor of 120% (*1 point*).
- b. If differential relay is has ability to compensate for current transformer ratio at both side then what could be value of that bias current? (*1 point*)?
- Determine minimum low-set value of differential relay characteristic (in per unit of Isecondary CT=5A)? (1 point);
- d. If high-set value of differential relay characteristic is 10 (in per unit of transformer rating current) then what could be minimum short-circuit voltage value of transformer? (*1 point*)

FINAL EXAM: POWER SYSTEM PROTECTION AND CONTROL (EE4040) SOLUTION

Question 1: Expla	n meaning of voltage	e transformer's specificati	on (1 point):
-------------------	----------------------	-----------------------------	---------------

Voltage level (V)	Total core	Core 1	Core 2 & Core 3
$\frac{115000}{\sqrt{3}} : \frac{100}{\sqrt{3}} : \frac{100}{\sqrt{3}} : \frac{100}{\sqrt{3}}$	3	100VA; 0,2	200VA; 3P

Answer:

- This voltage transformer can be installed in 110kV network
- It has three cores with secondary voltage of 100V
- Core 1 has accuracy class of 0,2 and rated power of 100VA. This core is used for precise metering purpose only.
- Core 2 & Core 3: both have accuracy class of 3P with rated power of 200VA. Both cores are used for protective relaying purpose; not suitable to use for metering due to low accuracy.

Question 2: Calculate setting values for overcurrent protection of 110kV transformer:

Transformer rated power: 32 MVA Voltage level U ₁ /U ₂ /U ₃ (kV): 110/23/35 Permissible overload factor: 1,2 Current measured by BI ₁ when fault occurs at N (kA)						
Voltage level U ₁ /U ₂ /U ₃ (kV): 110/23/35 Permissible overload factor: 1,2 Current measured by BI ₁ when fault occurs at Ni (kA)						
Permissible overload factor: 1,2 Current measured by BI1 when fault occurs at N (kA)						
Current measured by BI1 when fault occurs at N (kA)						
N ⁽³⁾ N ⁽²⁾						
1,47 1,27						
Current measured by BI_1 when fault occurs at N2 (kA)						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
2,37 1,93 2,15 2,25 1,68 1,47						

Require:

a. Determine current transformer ratios for BI1; BI2; BI3 (0,5 point) (Rated primary current of BI can be chosen as: 10 - 12,5 - 15 - 20 - 25 - 30 - 40 - 50 - 60 - 75A and its multiple of 10, 100, 1000 times).

b. Calculate pickup current and time delay for relay 2 & 3 (1 point)

c. Evaluate minimum sensitivity of relay 2? Determine if this sensitivity of relay 2 meets regulation or not (*0,5 point*)?

Answer:

a. Determine current transformer ratios for BI1; BI2; BI3 (0,5 point)

Rated current of transformer is calculated based on following formula:

$$I_{rated} = \frac{S_{rated}}{\sqrt{3} * U_{rated}}$$

Consider permissible overload factor (*K*_{overload}) then maximum current will be calculated as:

$$I_{max} = K_{overload} * \frac{S_{rated}}{\sqrt{3} * U_{rated}}$$

One should select rated primary current of BI to be equal or greater than I_{max} and be closet to standard value of manufacture. Secondary currents are all to be 1A. Results:

Side	U _{rated}	S _{rated}	I _{rated} (kA)	I _{max} (kA)	I _{BI} (A)	Ratio
	(kV)	(MVA)				
1	110	32	0.168	0.20	200	200/1
2	23	32	0.803	0.964	1000	1000/1
3	35	32	0.528	0.633	750	750/1

b. Calculate pickup current and time delay for relay 2 & 3 (1 point)

• Pickup current of time delay overcurrent 2 (ANSI 51):

$$I_{pickup} = K * I_{rated}$$

Minimum value of K can be chosen as 1.5 or higher.

Assume that K=1.6

$$I_{pickup Relay 2} = 1.6 * 0.168 = 0.269 (kA)$$

Time delay of Relay 5:

$$t_{Relay 5} = \max(t_{lines 23kV}) + \Delta t = 1.3 + 0.5 = 1.8 (sec)$$

(one may select $\Delta t=0.3 \div 0.6 \text{ sec}$)

Time delay of Relay 2:

$$t_{Relay 2} = t_{Relay 5} + \Delta t = 1.8 + 0.5 = 2.3$$
 (sec)

Alternative: Or student may use more detailed formula:

$$I_{pickup} = \frac{K_{at} * K_{mm}}{K_{tv}} * I_{max}$$

• Pickup current of instantaneous earth fault overcurrent 3 (ANSI 50N): $I_{pickup Relay 3} = K_{at} * 3I_{0 \max through BI1}$

Here safety factor K_{at} can be in range of 1,1÷1,3

Assume that K_{at}=1,1 hence:

$$I_{pickup Relay 3} = 1.1 * 1.68 = 1.85 (kA)$$

Time delay of Relay 3: $t_{Relay 3} = 0.05 (sec)$

c. Evaluate minimum sensitivity of relay 2? Determine if this sensitivity of relay 2 meets regulation or not (*0,5 point*)?

Minimum sensitivity value of relay 2:

$$K_{n\,min} = \frac{I_{short\ circuit\ \min\ through\ BI1}}{I_{pickup\ Relay\ 2}} = \frac{1.27}{0.269} = 4.72 > 2$$

This minimum sensitivity value is greater than 2 then it safely meets regulation.

Question 3: Calculate setting values for distance protection in following scheme:

Network rated voltage: 115kV

a. Calculate setting values for 3 protection zones of distance protection (1,5 point)

Line AB impedance: $Z_{line AB} = 3 + j40 = 40(86^{0}) (\Omega)$ Line BC impedance: $Z_{line BC} = 2 + j50 = 50(88^{0}) (\Omega)$ Line BD impedance: $Z_{line BD} = 1 + j30 = 30(88^{0}) (\Omega)$

- Setting value for zone I:

 $Z_{pickup \ Zone \ I} = 0.85 * Z_{line \ AB} = 0.85 * 40(86^{\circ}) = 34(86^{\circ}) (\Omega)$ (one may select Zone I with setting range of (0.8÷0.85) of Z_{line})

Time delay of Zone I:

$$t_{Zone I} = \mathbf{0} (sec)$$

Final Exam No. 1

- Setting value for zone II:

 $\begin{cases} Z_{pickup \ Zone \ II} \geq 1.2 * Z_{line \ AB} \\ Z_{pickup \ Zone \ II} \leq Z_{line \ AB} + 0.5 * Z_{shotest \ line \ from \ bus \ B} \end{cases}$

Hence:

$$Z_{pickup \ Zone \ II} = 1.2 * (3 + j40) = 3.6 + j48$$

Checking restrain condition:

 $Z_{line AB} + 0.5 * Z_{line BD} = 3.5 + j55 \rightarrow Z_{pickup Zone II} = (3.6 + j48) < (3.5 + j55)$ Final setting value for Zone II: $Z_{pickup Zone II} = (3.6 + j48) = 48.13(86^{\circ}) (\Omega)$ Time delay of Zone II:

$$t_{Zone II} = \Delta t = \mathbf{0}.\mathbf{5} (sec)$$

- Setting value for zone III:

$$Z_{pickup \ Zone \ III} = Z_{line \ AB} + + Z_{longest \ line \ from \ bus \ B} = Z_{line \ AB} + Z_{line \ BC} = 5 + j90$$
$$= 90.14(87^{0}) (\Omega)$$

Time delay of Zone III:

$$t_{Zone III} = 2\Delta t = \mathbf{1}.\mathbf{0} (sec)$$

In practice, time delay of Zone III may be set higher since it may need to coordinate with other protection function.

b. Assume that maximum line load is 300MVA with power factor $\cos\varphi=0.85$. Determine maximum resistive reach value of protection zone (*1,5 point*)

Rated line voltage is 115kV \rightarrow minimum allowable operating voltage will be:

(one may select value of 90% instead of 85%)

Minimum line load impedance will be:

$$Z_{line\ load} = \frac{V_{min}^2}{S_{load\ max}} = \frac{97.75^2}{300} = 31.85\ (\Omega)$$

Power factor $\cos\varphi=0.85$, hence resistive component of line load impedance will be:

$$R_{line\ load} = \cos \phi * Z_{line\ load} = 27.1 \ (\Omega)$$

Resistive reach setting of distance relay will be set with margin of 20%, then maximum resistive reach setting could be (*one may select different value of margin, but should not be less than 20% due to inherent errors of instrument transformers*):

$$R_{reach\,max} = 0.8 * 27.1 = 21.68 \,(\Omega)$$

Question 4: Consider following differential protection scheme:

Given data:

- Rated current of side 1 is 100 (A) ; CT ratio (BI1) is 120/5
- Rated current of side 2 is 1000 (A) ; CT ratio (BI2) is 1000/5
- Maximum CT ratio error is 10%
- Tap changer regulation range: ±9x1,78%
- Short-circuit voltage (percent) : U_N%=10,5

Require:

- a. Evaluate maximum bias current during normal operation of transformer with permissible overload factor of 120% (*1 point*).
 - Maximum secondary current at side 1: $120\% * 100A * \frac{5}{120} = 5A$
 - Maximum secondary current at side 2: $120\% * 1000A * \frac{5}{1000} = 6A$
 - Bias current due to different current transformer ratio: Ibias CT ratio=6A-5A=1A
 - Bias current due to current transformer error and tap changer:

Ibias CT error + tap change = $120\%*100*(10\%+9x1,78\%)*\frac{5}{120}=1.3$ A

- Total maximum bias current:

Ibias total= Ibias CT ratio+ Ibias CT error + tap change =1A+1.3A=2.3 A

b. If differential relay is has ability to compensate for current transformer ratio at both side then what could be value of that bias current? (*1 point*)?

If relay has ability to compensate for different current transformer ratio at both side then $I_{\text{bias CT ratio}}$ will be omitted from total maximum bias current; therefore maximum bias current now only be: $I_{\text{bias total}} = I_{\text{bias CT error + tap change}} = 1.3 \text{ A}$

Determine minimum low-set value of differential relay characteristic (in per unit of Isecondary CT=5A)? (1 point);

Assume that relay has ability to compensate for different current transformer ratio then maximum bias current during normal operation is $I_{\text{bias total}}$ = 1.3 A as proven in section (b). Low set pickup value of differential relay would not less than:

1.3A/5A=0.26 (pu)

Hence one may select setting value of **0.26** or higher but do not greater than 0.5 due to limit in setting range of most of nowadays relays.

d. If high-set value of differential relay characteristic is 10 (in per unit of transformer rating current) then what could be minimum short-circuit voltage value of transformer? (*1 point*)

Minimum high set value is set as 120% of $1/(U_N\%)$

(one may select value of 100% instead of 120% due to conservative assumption in calculating high set value)

As high set value is 10 then:

$$U_{N\%} = \frac{1}{10/120\%} * 100 = 12 \ (\%)$$

----- END OF SOLUTION ------