
School of Electrical	EXAM OF CONTROL THEORY 1 (EE3280)	Signature of Lecturer
Engineering, Hanoi University of Science and	Exam Number: 01	
Technology	Time: 90 Minutes	

1. Consider the System G(s) and two Controllers are described by $R_1(s)$, $R_2(s)$ (Fig. 01).

a. We assume $u(t) = a1(t)(a: \text{Const}); G(s) = \frac{k}{s(1+T_2s)^2}; k = 0,5; T_2 = 2$ and

 $R_1(s) = k_1$, $R_2(s) = k_2$ (k_1, k_2 are constant numbers). Please to find k_1, k_2 based on Nyquist property to ensure the stability of Closed system and static error equals to 0 ?;

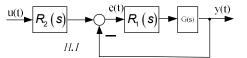
b. We assume

$$u(t) = a1(t)(a: \text{Const}); G(s) = \frac{k}{s(1+T_2s)}; k = 0,5; T_2 = 2; R_1(s) \text{ is PID}$$

Controller and $R_2(s)$ is the first order inertia block. Please to find all of parameters $R_1(s)$, $R_2(s)$ to obtain the Stable System. Please to find the stability reserve of closed system.

2. Consider the System as follows:

$$\frac{dx}{dt} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \underline{x} + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \underline{u}, \quad y = a x_1 + x_3$$


- a) Please to check the Stability Property and Controllability Property?
- b) Please to consider the Observability Property?.
- c) Cho a = 1, Please to find state feedback controller satisfying the convergence speed of free state trajectory is slower than e^{-3t} and observer error is faster than e^{-3t} ;
- d) Drawing the control system using state feedback control law and observer. Please to check the Controllability Property? Analysis?

e) Consider the systems
$$\frac{dx}{dt} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} x + \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} u$$
. Applying the previous contents to find

state feedback controller to stabilize System.

School of Electrical	EXAM OF CONTROL THEORY 1 (EE3280)	Signature of Lecturer
Engineering, Hanoi University of Science and	Exam Number: 02	
Technology	Time: 90 Minutes	

1. Consider the System G(s) and two Controllers are described by $R_1(s)$, $R_2(s)$ (Fig. 01).

a. We assume $u(t) = a1(t)(a: \text{Const}); G(s) = \frac{k}{s(1+T_2s)^2}; k = 10; T_2 = 1$

and $R_1(s) = k_1$, $R_2(s) = k_2$ (k_1, k_2 are constant numbers). Please to find k_1, k_2 based on Nyquist property to ensure the stability of Closed system and static error equals to 0?;

b. We assume

$$u(t) = a1(t)(a: \text{Const}); G(s) = \frac{k}{s(1+T_2s)}; k = 0,5; T_2 = 2; R_1(s) \text{ is PID}$$

Controller and $R_2(s)$ is the first order inertia block. Please to find all of parameters $R_1(s)$, $R_2(s)$ to obtain the Stable System. Please to find the stability reserve of closed system.

2. Consider the System as follows:

$$\frac{dx}{dt} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 2 \end{pmatrix} \underline{x} + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \underline{u}, \quad y = x_1 + ax_2$$

- a) Please to check the Stability Property and Controllability Property?
- b) Please to consider the Observability Property?.

c) Cho a = 1, Please to find state feedback controller satisfying the convergence speed of free state trajectory is slower than e^{-3t} and observer error is faster than e^{-3t} ;

d) Drawing the control system using state feedback control law and observer. Please to check the Controllability Property? Analysis?

$$\begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 1 \end{pmatrix}$

f) Consider the systems $\frac{dx}{dt} = \begin{vmatrix} 0 & 1 & 2 \\ 0 & 2 & 2 \end{vmatrix} x + \begin{vmatrix} 0 & 2 \\ 1 & 2 \end{vmatrix} \underline{u}$. Applying the previous contents to find

state feedback controller to stabilize System.

Notice: Students are able to use documents .

Notice: Students are able to use documents .