

ELECTRIC POWER ENGINEERING EDUCATION RESOURCES: 2015-16 US AND CANADIAN UNIVERSITY SURVEY RESULTS

REPORT FROM THE POWER AND ENERGY EDUCATION COMMITTEE OF THE IEEE POWER & ENERGY SOCIETY

Survey Team Members Nilanjan Ray Chaudhuri, Pennsylvania State University Paul Hines, University of Vermont Rajesh Kavasseri, North Dakota State University Dennis Ray, University of Wisconsin-Madison

November 2017

EXECUTIVE SUMMARY

This report provides insights into the status of power engineering education in the US and Canada for the 2015-2016 academic year. The report focuses on accredited engineering programs at universities that replied voluntarily to an online survey between July and December 2016. For the 137 universities (127 US, 10 Canadian) that submitted data on their electric power engineering programs, the report contains information on faculty and staff providing instruction, student enrollments and degrees granted, course offerings and enrollments, and research areas and funding levels. Analyses incorporate the results of fifteen prior university surveys of power engineering education resources since 1969-1970. The results show substantial growth in student interest, and in the number of faculty and staff providing instruction. Course subjects are also evolving in response to the changing education needs of the next generation of power engineers.

Degree Offerings: Undergraduate engineering degrees were offered by all of the responding universities, and the students can take mandatory and elective power engineering courses to prepare for power engineering careers. Some universities let undergraduate students select a power engineering specialty, such as by providing track or certificate options. All Canadian universities offered master's and doctoral degrees while about 88% and 75% respectively of the US universities did. Online graduate degree opportunities, most often for master's degrees, were reported at a number of universities. Most universities encouraged coop experiences for undergraduates.

Student Enrollments and Degrees Granted: Student interest in power engineering careers has grown substantially. Graduate student enrollments are shown in the chart below. In the US, there has been about a doubling of master's, international, and full-time students between the 2005-6 and 2015-16 academic years. In 2015-16, international students were about 78% and 73% of full-time doctoral students in the US and Canada respectively. Domestic students had the highest percentage of part-time students, reaching 80% and 91% of master's students in the US and Canada respectively. Many part-time students were likely pursuing an advanced degree while working. Although most graduate students were international, a little over 80% of undergraduate students were domestic.

Average Number of Graduate Students Enrolled in Universities Reporting Non-Zero Enrollments

The following table gives the Survey Team's estimates of the number of degrees granted in 2015-16.

ESTIMATED DEGREES GRANTED IN THE 2015-16 ACADEMIC YEAR

Category	Canada	US
Undergraduates	420	2,889
Master's	184	1,362
Doctoral	91	365

As mentioned above, a little over 80% of the undergraduates were domestic students. The Survey Team found that between 2013-14 and 2015-16, the number of degrees granted to undergraduate and graduate students grew in the US and Canada. However, for universities responding to both surveys, enrollments of domestic master's students declined and enrollments by domestic doctoral students were about the same.

Courses: Over 1,500 undergraduate and graduate courses were reported. Power and energy systems courses were frequently identified, but the universities were also offering courses in various new technology subjects, particularly courses related to power electronics and renewable generation. Distance education enrollments in one or more undergraduate and/or graduate courses were reported by 18% and 32% of universities respectively.

Instructional Faculty and Staff: As shown in the chart below, the number of instructional faculty and staff has been growing steadily since the 2005-6 survey. The higher number of young faculty members bodes well for the sustainability of university power programs as the universities prepare for senior faculty retirements. Almost 40% of faculty and staff were reported to be eligible for retirement by 2026. Universities have also increased their use of staff members, such as adjunct professors, instructors, and lecturers, probably to meet increased student enrollments while bringing engineers with industry experience in new technologies to the classroom. Most faculty and staff were in electrical and computer engineering, but the breadth of power engineering education has expanded with the use of faculty and staff in new disciplines for power engineering education.

Average Number of Faculty and Staff per University

Research Activities and Funding: Inflation-adjusted research expenditures increased by some 75% between the 2001-2 and 2015-16 surveys. Government funding played a central role in that expansion, as shown in the chart below. The two most frequently reported university research areas were intelligent grid and renewable generation. The growth in research funding has been essential to creatively addressing the challenges of new technologies and to supporting the faculty who met the substantial rise in the number of students taking power engineering courses.

Funding from Government, Utilities, and Other Industries (%)

Challenges: The survey results suggest that three key challenges in university power engineering education are:

- Motivating domestic students to pursue graduate degrees with a focus on power engineering
- Evolving curricula to address the challenges and changes facing the evolving electric power industry
- Maintaining sufficient research funding needed to sustain innovation to advance electric power and energy technologies, and to support young faculty members who will eventually replace retiring faculty.

TABLE OF CONTENTS

Exec	CUTIVE SUMMARY	i
Tabi	e of Contents	. iii
Tabi	E OF TABLES	. iv
Tabi	e of Figures	v
I.	INTRODUCTION	1
II.	ELECTRIC POWER ENGINEERING INSTRUCTIONAL FACULTY AND STAFF	2
III.	RESEARCH ACTIVITIES AND FUNDING	6
IV.	EDUCATION OVERVIEW	11
V.	STUDENT ENROLLMENTS	13
VI.	DEGREES GRANTED	16
VII.	Courses	20
VIII.	PERSPECTIVES ON WHY STUDENT ENROLLMENTS INCREASED OVER THE LAST TEN YEARS	22
IX.	CONCLUSIONS	23
Refe	RENCES	24
Appe	NDIX	25
ATTA	ACHMENT: 2015-2016 PEEC Online Survey Text	61

TABLE OF TABLES

Table 1. Faculty and Staff by Position, Highest Degree, IEEE Fellow, and PES Membership	2
Table 2. Total Personnel Changes	4
Table 3. Career Experience and Retirement Eligibility	4
Table 4. Faculty and Staff Distribution by Years of Academic Experience	4
Table 5. Faculty and Staff Characteristics by Academic Position	5
Table 6. Distribution of the Number of Faculty and Staff Per University	5
Table 7. Research Expenditure Responses	6
Table 8. Research Expenditures (US\$)	8
Table 9. Average Total Research Expenditures by Universities in both the 2013-14 and 2015-16 Surveys	9
Table 10. Research Funding Outlook	. 10
Table 11. Distribution of Total Research Expenditures (US\$)	. 10
Table 12. Research Expenditures (US\$) Per Faculty Member	. 11
Table 13. Frequency of Reported Research Areas	. 11
Table 14. Undergraduate Education Programs	. 12
Table 15. Number of Universities Offering Graduate Degrees	12
Table 16. Number of Universities Reporting Distance Education Students	. 13
Table 17. Number of Courses with Distance Education Students	. 13
Table 18. Student Enrollments	. 13
Table 19. Graduate Student Enrollments: Ten Year Trend	. 16
Table 20. Graduate Student Enrollment Percentages in 2005-6 and 2015-16	. 16
Table 21. Estimated Degrees Granted to Students Entering Power Engineering Career Fields	. 17
Table 22. Estimated Degrees Granted in 2015-16 Adjusting for Degrees Granted at Universities that Participated in the 2013-14 Survey but not the 2015-16 Survey*	l 18
Table 23. Distribution of Degrees Granted Per University	. 18
Table 24. Average Number of Faculty and Staff Per Number of Degrees Granted at each University	. 19
Table 25. Growth Rates in Degrees Granted and Enrollments for Universities in both the 2013-14 and 2015-16 Surveys	19
Table 26. Universities with Power Faculty Working to Attract K-12 Students or to Help K-12 Teachers	20
Table 27. Undergraduate Classes with Highest Enrollment at a University	20
Table 28. Largest Undergraduate Classes	21
Table 29. Course Topics Based on Occurrence of Selected Keywords in 749 Undergraduate and 809 Graduate Course Titles	. 21
Appendix Table 1. Universities Responding to the 2015-2016 PEEC Survey	25
Appendix Table 2. Faculty and Staff Engaged in Power Engineering Instruction in 2015-2016	. 29
Appendix Table 3. Power Program Research Activities and Funding in 2015-16	. 36
Appendix Table 4. Education Program Characteristics	. 38
Appendix Table 5. Estimated Degrees Granted and Student Enrollments in 2015-16	. 42
Appendix Table 6. Course Offerings by University	45

TABLE OF FIGURES

Figure 1.	Average Number of Faculty and Staff Per University by Survey Year	3
Figure 2.	Percentages of Faculty and Staff by Survey Year	3
Figure 3.	Funding from Government, Utilities, and Other Industries (%)	9
Figure 4.	Average Research Funding from Government, Utilities, and Other Industries (Real \$000)	9
Figure 5.	Average Research Funding Per Faculty Member by Survey Year (Real \$000)	10
Figure 6.	Average Number of Graduate Students Per University - Master's and Doctoral	14
Figure 7.	Average Number of Graduate Students Per University - Domestic and International	15
Figure 8.	Average Number of Graduate Students Per University - Full-Time and Part-Time	15
Figure 9.	Average Degrees Granted Across Universities Reporting Graduate Students	17
Figure 10	 Average Number of Students in Elective Undergraduate Power Classes with Highest Enrollment at Each University 	20

ELECTRIC POWER ENGINEERING EDUCATION RESOURCES: 2015-16 US AND CANADA SURVEY RESULTS

I. INTRODUCTION

The Survey Team of the Power & Energy Education Committee (PEEC) was appointed to survey US and Canadian universities to report on the status of power engineering education resources consistent with 15 previous such efforts [1-15]. This report includes information on faculty and staff, education programs, students, courses, and research areas and funding. The Survey Team has not ranked or categorized programs in terms of their quality nor does it encourage the use of the data to do so. The information is provided to help universities, industry, government, and students to better understand the status of power engineering education to improve power engineering education and inform decisions on educational opportunities.

Four-year university institutions in the US and Canada awarding accredited (e.g., ABET accreditation in the US) degrees in electrical engineering were invited to participate in an online survey. The text of the survey is given in the attachment to this report. The survey was conducted between July and December of 2016. Faculty at 137 universities responded (127 US and 10 Canadian universities). Appendix Table 1 lists the responding universities, identifies the faculty members who submitted their university's survey, and provides background information on each university. The background information includes location (i.e., state/province and country), college/school with the lead department of the power engineering program, and relevant research centers.

Faculty respondents were asked to provide data from the 2015-16 academic year of July 1, 2015 to June 30, 2016. The survey covers instruction and research topics focused on electric power engineering associated with grid operations, planning, and maintenance. Power electronics was included. Other engineering topics, such as communications and IT, were to be included to the extent that they addressed power engineering challenges and were included in power engineering education at the responding universities. As a discipline, power engineering is requiring more diverse skills and knowledge. As a consequence, it was expected that courses and research topics outside of the traditional core areas of power engineering education would be in the survey responses.

The data in the following categories were provided by the respondents: (1) general program information; (2) power faculty and staff; (3) undergraduate and graduate education; (4) course offerings; (5) degrees granted (i.e., graduations) and enrollments; and (6) research expenditures and topic areas. University-specific survey response data are given in the Appendix. Results of data analyses are provided in the text. In some cases, the analyses incorporate data from prior surveys as far back as the first PEEC survey for the 1969-70 academic year. Survey data from Canadian universities began to be collected in the 1989-1990 survey.

The data requested in PEEC surveys over the years has typically been somewhat different from survey to survey. Changes in requested survey data were more pronounced when the surveys began to be delivered online rather than by paper. Online surveys began with the 2001-02 survey. Changes continued to be made in the 2015-16 survey to make completion less time-consuming, to make it clearer what information was being requested, to make interpretation of responses less ambiguous, to drop information requests that seem to be less important now, and to respond to new information needs. However, certain fundamental information requested in the 2015-16 survey remained the same to enable assessment of power education and research trends over time.

The focus of the survey was on power engineering education. As a consequence, listed faculty and staff were expected to have spent time delivering course instruction as part of their university responsibilities. The courses that were listed should have been courses that were in the curriculum to help students prepare for a career in power engineering. Including such specialties as nuclear engineering courses was not encouraged.

To assess overall trends in student interest in power engineering, survey respondents were asked to estimate the number of students who were entering the power engineering career field whether for jobs in industry, government or academia. Respondents were asked to provide the best estimates that they could of the number of degrees granted and enrollments. Estimates were particularly needed for undergraduate students pursuing power engineering careers because universities typically do not offer undergraduate degrees in power engineering per se.

Although there were 137 survey respondents, not all of them provided data for all survey sections. Therefore, we often indicate the number of respondents for particular data. In some cases, universities accurately reported zero ("0") as a response, but, never-the-less, that response was not used in computing certain metrics. As a result, interpretation of provided metrics will depend upon which universities were included in computing the metric. Some metrics cover all responding universities. Other metrics only include universities with positive (i.e., non-zero)

responses to certain data, such as all universities reporting a positive number of graduate student enrollments. Hopefully, the text is clear about how to interpret the metrics.

Trend analyses of the PEEC survey data can help to identify changes in key metrics such as number of students and research expenditures, but they are subject to survey limitations. Differences in the responses from one survey to the next may be due to a number of reasons:

- Actual data changes revealing true underlying trends
- Revisions made by the universities unrelated to actual changes, perhaps due to a different faculty member completing the survey
- Changes in which universities responded.

For instance, 15 universities that responded to 2013-14 survey did not respond to the 2015-16 survey. In addition, there were 20 universities responding to the 2015-16 survey that did not respond to the 2013-14 survey. As a result, changes in metrics such as number of students between 2013-14 and 2015-16 are likely due, in part, to the differing characteristics of the sets of survey respondents. This source of volatility in the metrics is particularly true for the Canadian university data because of the small number of Canadian universities in the survey. In general, there will likely be somewhat more confidence in conclusions based on trends across multiple surveys than comparisons between two concurrent surveys. To try to control for this source of volatility when assessing near-term trends, in a few cases, analyses were limited to universities that responded to both the 2013-14 and 2015-16 surveys.

II. ELECTRIC POWER ENGINEERING INSTRUCTIONAL FACULTY AND STAFF

Appendix Table 2 lists the faculty and staff active in electric power engineering education at each university in the 2015-16 academic year. Listed faculty and staff were expected to have spent time delivering course instruction. The faculty list includes full, associate, and assistant (i.e., untenured) professors. For the purposes of this survey, individuals listed as staff were to include adjunct professors, emeritus professors, and instructors/lecturers. For each faculty member listed, the table provides (1) name, (2) department, (3) rank or position, (4) highest degree obtained, (5) PES membership, (6) IEEE Fellow status, (7) full-time or part-time academic year appointment, and (8) years of career experience in academia, the power industry, and other (non-power) industries. Academic focus on the power engineering area should have been reported only as academic experience rather than power industry experience. All 137 responding universities listed their faculty and staff. However, there are missing data, particularly on career experience.

Table 1 below summarizes the responses for academic position, highest degree, IEEE Fellow, and PES membership. There were 549 faculty and 123 staff engaged in instruction during the 2015-16 academic year. Most were in departments associated with electrical engineering, but others were in such departments as computer science, industrial engineering, economics and policy, mechanical engineering, math, materials science, engineering technology, bioengineering, philosophy, energy and resources, mining, civil engineering, informatics, and computing and cyber systems. The involvement by faculty in departments other than electrical engineering reflects the growing interdisciplinary cooperation needed to address research and instructional needs in today's electric power career field.

		ACADEMIC POSITION				HIGHEST DEGREE							
	All Faculty And Staf	Professor	Associate Professor	Assistant Professor	Adjunct Professor	Instructor or Lecturer	Emeritus	PhD	Master	Bachelor	Other	Fellow	PES Member
Number	672	272	128	149	61	46	16	629	38	4	1	156	529
Percent	100.0	40.5	19.0	22.2	9.1	6.8	2.4	93.6	5.7	0.6	0.1	23.2	78.7

Table 1. Faculty and Staff by Position, Highest Degree, IEEE Fellow, and PES Membership

Figure 1 gives the average number of faculty and staff per responding university by survey year beginning in 1969-1970. Figure 2 provides related percentages of total for faculty and staff. Taken together, the figures show that universities have been adding faculty over the last decade, particularly younger faculty (i.e., associate and assistant professors). The total number of faculty reported in the surveys rose from 339 at 125 universities in 2005-6 to 549 at 137 universities in 2015-16. Given the rise in the number of students as discussed later in the report and the prospects of senior faculty retirements, this is a positive trend that will help sustain power engineering education over time. As shown later in this report, hiring of younger faculty has occurred in the context of higher research funding and higher numbers of students in power engineering classes.

At the same time, the rising number of students and the increasing breadth requirements in the curriculum to prepare students for today's power industry appear to have also motivated increased staff hiring, including adjunct professors, instructors, and lecturers. When emeritus faculty (many of whom continue teaching after retirement) are included as staff, over 18 percent of all instruction personnel were staff. There was decline in the use of staff in the 1980s as shown in Figures 1 and 2. This decline was likely a result of a decline in the number of students in power engineering specifically and in engineering in general in that period. Staff are generally not tenured so their numbers are more likely than faculty to change as education needs and budgets change.

Note: These averages are over all responding universities.

Figure 2. Percentages of Faculty and Staff by Survey Year

That the number of faculty and staff has been rising is also indicated by the reported hiring and departure data for all responding universities shown in Table 2. On average, the universities reported hiring two faculty and staff for each one that left.

	Canada	US	Both
Faculty/Staff Left	5	39	44
Faculty/Staff Hired	8	81	89

Table 2. Total Personnel Changes

Table 3 provides the average number of years of experience in academia, in the power industry, and in the other (non-power) industries for faculty and staff. It also gives the distribution of retirement eligibility. Not surprisingly, as shown in past surveys, faculty and staff in general have more experience in academia than industry.

In terms of retirement eligibility, the table also indicates that some 37% of faculty and staff were retirement eligible in 2015-16 or will be within the next ten years. The 37% metric may be a low estimate of retirement eligibility due to missing data since some 31 universities reported zero ('0") faculty and staff were retirement eligible over the period. Awareness of retirement eligibility is important for planning faculty and staff hires, particularly given that it may take six years for an assistant professor to get tenure and the process of doing so requires the mentorship of senior faculty.

Table 3.	Career	Experience	and	Retirement	Eligibility

Experience	(Average Numb	er of Years)	Retirement Eligibility					
Academia	Power Industry	Other Industry	Now	1-5 Years	6-10 Years	Now to 10 Years		
16.1	3.9	1.9	12.1%	8.6%	16.5%	37.2%		

Note: The average career experiences were computed with data from 444 faculty and staff. Thirty-one universities reported that none of their faculty and staff were now or would be retirement eligible over the ten year period. It is not known whether these were accurate responses or missing data.

Table 4 provides more details about the distribution of faculty and staff by years of career experience in academia. Almost half of the US faculty and staff as compared to about one-quarter of Canadian faculty and staff have ten or fewer years of experience in academia. That almost half of US faculty have ten or fewer years in academic experience reflects the recent growth in faculty hiring.

	С	anada	US		Both	
Years in Academia	Ν	%	Ν	%	Ν	%
1-10	11	25.6%	192	47.9%	203	45.7%
11-20	13	30.2%	77	19.2%	90	20.3%
21-30	11	25.6%	76	19.0%	87	19.6%
31-40	5	11.6%	42	10.5%	47	10.6%
41-50	3	7.0%	11	2.7%	14	3.2%
>50	0	0.0%	3	0.7%	3	0.7%
Total	43	100.0%	401	100.0%	444	100.0%
Average Academic	20.6		15.6		16.1	
Average Power Industry	2.7		4.0		3.9	
Average Other Industry		0.7		2.0		1.9

Table 4. Faculty and Staff Distribution by Years of Academic Experience

Note: The average career experiences were computed with data from 444 faculty and staff.

Table 5 provides more information about the characteristics of the faculty and staff by their academic position. Doctoral degrees (i.e., PhD's) are expected for faculty and emeritus professors (who are former faculty members) so almost 100% of faculty reported PhD as their highest degree. Adjunct professors, instructors, and lecturers were less likely to have PhDs. Only 70% of adjunct professors and 59% of instructors or lectures reported to have a PhD. Not

surprisingly, almost all IEEE Fellows were full or emeritus professors. About 79% of all faculty and staff were PES members with high membership percentages across all positions. Faculty and adjunct professors were typically fulltime. Part-time faculty and staff tended to be instructors or lecturers, or emeritus professors. Emeritus professors, followed by full professors, had the most academic experience whereas adjunct professors followed by instructors and lecturers had the most industry experience. Many adjunct professors, instructors, and lecturers likely came from industry to teach in academia or were working in industry while teaching part-time. In some case, people from industry may have asked to help with power engineering instruction in subjects that would contribute to career preparations by students.

The survey responses show that the size of power programs as measure by the number of faculty and staff varies considerably across universities. Table 6 gives the faculty and staff distributions by university. The lower 40% of universities have three or fewer faculty and staff while some 12% of responding universities report 10 or more faculty and staff. The average is about five faculty and staff. The university with the largest program reported 16 faculty and staff.

		ACADEMIC POSITION							
Characteristic	All Faculty And Staff	Professor	Associate Professor	Assistant Professor	Adjunct Professor	Instructor or Lecturer	Emeritus		
PhD	94%	99%	98%	99%	70%	59%	100%		
Fellow	23%	49%	3%	0%	0%	0%	63%		
PES Member	79%	79%	77%	83%	74%	72%	88%		
Full-Time*	96%	96%	94%	94%	100%	66%	33%		
Average Years Academic Experience	16.1	26.2	14.6	4.4	5.0	8.6	42.8		
Average Years of Industry Experience	5.8	4.1	3.9	2.9	20.1	12.2	6.4		

Table 5. Faculty and Staff Characteristics by Academic Position

Note: Full-time percentages and career experience data were reported for 444 faculty and staff.

Table 6. Distribution of the Number of Faculty and Staff Per University

No. of Faculty and Staff	Ν	%	
1	16	11.7%	
2-3	38	27.7%	
4-5	39	28.5%	
6-9	27	19.7%	
10+	17	12.4%	
Total	137	100.0%	
Average	4.9		
Maximum		16	

Note: The metrics were computed with data from all responding universities.

III. RESEARCH ACTIVITIES AND FUNDING

The survey asked for research expenditures, classified by non-equipment and equipment expenditures, on research by the faculty members entered in the survey. Research awards were not to be included – only actual expenditures. Appendix Table 3 gives the reported research expenditures by funding source (i.e., government, domestic utility, and other domestic industries) and the research areas at each university.

As given in Table 7, 125 of the 137 reporting universities reported positive total research expenditures. All Canadian universities reported positive non-equipment and equipment expenditures. Twelve US universities reported zero research expenditures. Forty-two US universities reported only non-equipment expenditures while seven US universities reported only equipment expenditures. A zero response could indicate either that the university actually had zero expenditures or that the data were not included in that university's response.

Category	Canada (N)	US (N)	Both (N)
All Responding Universities	10	127	137
Universities Reporting Positive Total Research \$	10	115	125
Universities Reporting Positive Non-Equipment \$	10	108	118
Universities Reporting Positive Equipment \$	10	73	83
Universities Reporting Zero Research \$	0	12	12
Universities Reporting Only Non-Equipment \$	0	42	42
Universities Reporting Only Equipment \$	0	7	7

Table 7. Research Expenditure Responses

Table 8 provides information on research expenditures in 2015-16. To put the US and Canadian university expenditures on a comparable basis, the Canadian research expenditures are expressed in US\$ using an average conversion rate of one Canadian dollar per 0.755 US dollar. Both averages and medians are reported because universities with very large reported research expenditures skew the averages away from the medians. The averages and medians are reported in two ways: (1) over universities with positive expenditure values for a particular funding category (that is, non-equipment and equipment), and (2) over all universities with positive total research expenditures. Obviously the interpretation of the averages and medians depends upon which universities were included in the calculation.

Here are some observations about the expenditure data.

- For all reporting universities, combined non-equipment research expenditures at around US\$143 million far exceed equipment expenditures of about US\$29 million.
- Both in the US and Canada, government funding is the dominant funding source providing some two-thirds of the non-equipment funding. However, equipment funding in Canada is almost 90% from government whereas in the US, industry funding constitutes about 29% of equipment expenditures.
- In US\$, average expenditures for US universities tend to be higher than Canadian universities, but the median values are lower indicating a greater percentage of US universities have lower research expenditures than in Canada.

Figure 3 shows that the reliance on government versus industry funding sources has varied over time starting with the 1969-1970 survey. The percentage of total research contributions from industry exceeded government contributions during the 80s and early 90s, but in the 21st century, government sources dominated.

Figures 4 and 5 illustrate trends in research expenditures in inflation-adjust (i.e., real) dollars. For the purposes of this report, real research expenditures were computed by adjusting historical research funding figures for inflation using the US Gross Domestic Product price deflator from the US Bureau of Economic Analysis. 2015-16 was the reference year for the price deflator so the averages can be thought of as being in 2015-16 dollars. Also, data from Canadian universities were not included in the university surveys until the 1989-90 survey, thereby somewhat affecting the averages in prior surveys. Canadian expenditures were also converted to US\$ for the 2013-14 and 2015-16 surveys using average exchange rates of 0.935 and 0.755 respectively (source: OANDA.com). Research funding by country was not readily available for prior years.

As shown in Figure 4, inflation-adjusted average research funding over all universities reporting positive research expenditures increased substantially in the 21st century from an average of \$776K per university in 2001-02 to \$1,378K in 2015-16. The increase in average real government funding from \$571K to \$942K shown in Figure 4

was the major reason for the growth in total research support. Interestingly, since 1993-94, average funding from "other" non-utility domestic industries has grown from \$28K to \$218K while average funding from utilities only increased from \$182K to \$218K in real terms. Thus, the funding from the utility industry about kept even with inflation, but other domestic industry funding rose. 2015-16 research funding from other domestic industries actually about equaled funding from utilities. This trend reflects industry changes (such as growth in deployment of smart grid technologies) that brought new businesses into the electric power industry.

Another way to analyze recent research expenditure trends is to focus just on those universities that were in both the 2013-14 and 2015-16 surveys. As indicated in the introduction, changes in which universities responded to the surveys will likely affect the results irrespective of true underlying trends in the data. Table 9 presents the average expenditures in the 2013-14 and 2015-16 surveys for those universities. These expenditures were not corrected for inflation or currency valuation. In comparing Table 9 to Table 8, it appears that the universities that responded to both surveys tended to have a little higher research expenditures than all respondents because the average total expenditures fell by some 21% for the Canadian universities, but rose by six percent for the US universities. Thus, the overall decline in research expenditures illustrated in Figure 4 appears to be principally due to the decline in reported research expenditures in Canada with an additional negative effect introduced by the reduced value of the Canadian dollar.

As indicated in Table 10, the universities responding to the 2015-16 survey were generally optimistic about their research funding outlook with 39% and 35% of the universities indicating an expectation of rising research funding over the next three and ten years respectively. As might be expected, there is more uncertainty about the long-term outlook. Of course, these perspectives were as of when a survey was submitted so current perspectives on the research funding outlook may be different.

The distribution of research funds at the universities is quite wide as shown in Table 11. 29% of the universities reported total research expenditures between US\$1 and US\$250,000 while 18% reported expenditures exceeding two million dollars. Table 11 also gives the average number of faculty and staff per expenditure range. Not surprisingly, the average number of faculty and staff rises as the expenditure range rises. The average of 3.5 faculty and staff at universities with an expenditure range of US\$1 to US\$250,000 rose to 7.6 faculty and staff when expenditures exceeded two million dollars.

Category	Canada	a	US		Both	
NON-EQUIPMENT EXPENDITURES	•				•	
Government - Non-Equipment	\$ 5,945,550	66.2%	\$ 92,402,560	68.9%	\$ 98,348,110	68.8%
Domestic Utility - Non-Equipment	\$ 2,260,470	25.2%	\$ 22,964,021	17.1%	\$ 25,224,491	17.6%
Other Domestic Industry - Non-Equipment	\$ 774,630	8.6%	\$ 18,680,406	13.9%	\$ 19,455,036	13.6%
Total Non-Equipment	\$ 8,980,650	100.0%	\$134,046,987	100.0%	\$143,027,637	100.0%
Universities with Positive Non-Equipment Expend	itures:					
Average Non-Equipment	\$ 898,065		\$ 1,241,176		\$ 1,212,099	
Median Non-Equipment	\$ 633,407		\$ 480,000		\$ 495,000	
Universities with Positive Total Expenditures:	· · · ·				·	
Average Non-Equipment	\$ 898,065		\$ 1,165,626		\$ 1,144,221	
Median Non-Equipment	\$ 633,407		\$ 450,000		\$ 450,000	
EQUIPMENT EXPENDITURES						
Government – Equipment	\$ 2,158,847	87.5%	\$ 17,208,227	64.2%	\$ 19,367,074	66.2%
Domestic Utility – Equipment	\$ 181,955	7.4%	\$ 1,891,500	7.1%	\$ 2,073,455	7.1%
Other Domestic Industry – Equipment	\$ 126,463	5.1%	\$ 7,707,833	28.8%	\$ 7,834,296	26.8%
Total Equipment	\$ 2,467,265	100.0%	\$ 26,807,560	100.0%	\$ 29,274,825	100.0%
Universities with Positive Equipment Expenditure	s:					
Average Equipment	\$ 246,726		\$ 367,227		\$ 352,709	
Median Equipment	\$ 144,394		\$ 70,000		\$ 77,000	
Universities with Positive Total Expenditures:						
Average Equipment	\$ 246,726		\$ 233,109		\$ 234,199	
Median Equipment	\$ 144,394		\$ 22,000		\$ 25,000	
TOTAL RESEARCH EXPENDITURES						
Government – Total	\$ 8,104,397	70.8%	\$109,610,787	68.1%	\$117,715,184	68.3%
Domestic Utility – Total	\$ 2,442,425	21.3%	\$ 24,855,521	15.5%	\$ 27,297,946	15.8%
Other Domestic Industry – Total	\$ 901,093	7.9%	\$ 26,388,239	16.4%	\$ 27,289,332	15.8%
Total Research Expenditures	\$ 11,447,914	100.0%	\$160,854,547	100.0%	\$172,302,461	100.0%
Universities with Positive Total Research Expendit	tures:					
Average Total Research Expenditures	\$ 1,144,791		\$ 1,398,735		\$ 1,378,420	
Median Total Research Expenditures	\$ 750,244		\$ 550,000		\$ 550,000	

Figure 3. Funding from Government, Utilities, and Other Industries (%)

Figure 4. Average Research Funding from Government, Utilities, and Other Industries (Real \$000)

Note: The averages were computed with data from the universities reporting positive (i.e., non-zero) total research expenditures.

Table 9.	Average Total Research Expenditures by Universities
	in both the 2013-14 and 2015-16 Surveys

Category	Canada	US
2015-16 Average Total Research Expenditures	CAN\$1,650,311	US\$1,568,663
2013-14 Average Total Research Expenditures	CAN\$2,079,607	US\$1,480,727
Percent Change from 2013-14 to 2015-16	-20.6%	+5.9%
Number of Universities with Positive Total Research Expenditures	0	08
and Responding to Both Surveys	9	90

Note: The average expenditures are in current dollars (i.e., uncorrected for inflation).

	Next	3 Years	Next	10 Years
	Ν	%	Ν	%
Rising	53	38.7%	48	35.0%
Stable	60	43.8%	58	42.3%
Declining	20	14.6%	14	10.2%
Unsure	4	2.9%	17	12.4%
Total	137	97.1%	137	100.0%

Table 10. Research Funding Outlook

Table 11. Distribution of Total Research Expenditures (U	S	;		•	,	,	;	5	5	5	5	5	ŝ	5	5	5	ŝ	5	5	5	1	5	5	5	5	5	5	5	5	5	ŝ	1	1	-	1	1	-	-	-	-	-	1	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	_	Ü	ĺ	l	l	l	Î	((;	ç	e	ï	ľ	IJ	J	Į	t	Ĺ	j	j	C	l	1	1	<u>.</u>	e	f)	ρ	I	q	K	X	2	2	2	Ľ	1	ŀ		L.	h	ł	c	1	r	1	a	1	e	(s	2	e	2	R	ŀ]		l	l	a	t	t)1	0	1	Г		r	1	f	ſ)	J	((
--	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	----------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	----	---	---	---	--	----------	---	---	---	---	---	---	---

Expenditure Range (\$)	Ν	%	Average No. of Faculty and Staff
\$0	12	8.8%	2.6
\$1-\$250,000	40	29.2%	3.5
\$250,001-\$500,000	18	13.1%	4.3
\$500,001-\$1,000,000	22	16.1%	4.2
\$1,000,001-\$2,000,000	20	14.6%	7.1
>\$2,000,000	25	18.2%	7.6
All	137	100%	4.9

An important question is whether the growth in research funding has been commensurate with the rising number of faculty since faculty funding adequacy is essential for sustaining electric power engineering programs. Per faculty funding is an indicator of faculty's ability to support graduate students and to meet university research performance expectations, particularly for untenured faculty. The metric of research funding per faculty member over time is shown in Figure 5. The graph indicates that research funding per faculty member has grown in the 21st century, with particularly strong growth in the 2013-14 and 2015-16 survey results. However, Figures 4 and 5 together may suggest that the growth in research funding per faculty member may have peaked if not started to decline. The longer term trend will have to be discerned from analyses with future survey data.

Figure 5. Average Research Funding Per Faculty Member by Survey Year (Real \$000)

Note: The averages were computed with data from the universities reporting positive (i.e., non-zero) total research expenditures.

Table 12 gives the per faculty member distribution of non-equipment and total research expenditures for the responding universities. Some 24% of universities averaged between US\$1 and US\$50,000 per faculty member for non-equipment expenditures. Similarly some 23% of universities averaged between US\$1 and US\$50,000 for total research expenditures. This is likely inadequate funding to support one graduate student at most universities. If non-equipment expenditures exceeding US\$200,000 were an indicator of adequate research support, then only 24.8% of

all universities would meet that criterion. Thus, research funding adequacy is a timely topic for further study and discussion among the academic, government, and industry communities.

Per Faculty Expenditure Range	Non-I Exp	Equipment enditures	Total Ex	penditures
\$	Ν	%	Ν	%
\$0	19	13.9%	12	8.8%
\$1-\$50,000	33	24.1%	32	23.4%
\$50,001-\$100,000	23	16.8%	21	15.3%
\$100,001-\$200,000	28	20.4%	24	17.5%
\$200,001-\$350,000	16	11.7%	24	17.5%
>\$350,000	18	13.1%	24	17.5%
All	137	100.0%	137	100.0%

Table 12. Research Expenditures (US\$) Per Faculty Member

The respondents were asked to identify their university's research areas. The research areas from which they were to select generally followed IEEE PES technical committee names, although the list was shortened and generalized for the purposes of this survey. Table 13 indicates the frequency with which research areas were reported by the universities. The most frequently reported research areas were intelligent grid and renewable generation. The least reported were the hardware-oriented areas of transformers, substation automation, switchgear, and surge protection devices.

Research Area	% of Universities
Intelligent Grid	75.9%
Renewable Generation	73.0%
Power System Computation and Analysis	51.8%
Power Electronics	51.1%
Energy Storage & Stationary Battery	48.2%
Power System Dynamic Performance	38.0%
Power System Operations	38.0%
Electric Machinery	37.2%
Energy Development & Power Generation	35.8%
Power Engineering Education	35.0%
Power System Economics	31.4%
Power System Planning and Implementation	29.9%
Power System Communications & Cybersecurity	25.6%
Distribution System Analysis	21.9%
Power System Relaying	19.0%
Power System Instrumentation and Measurements	16.1%
Reliability, Risk and Probability Applications	14.6%
Transformers	10.2%
Substation Automation	8.8%
Switchgear, Surge Protection Devices	5.1%

 Table 13. Frequency of Reported Research Areas

IV. EDUCATION OVERVIEW

Degree offerings for students interested in power engineering careers vary across the 137 responding universities. All the universities offer undergraduate electrical engineering degrees. Since undergraduate students typically receive degrees in electrical engineering rather than specifically in power engineering, there are not "power engineering undergraduate degrees" although there are various special program offerings (such as certificates or tracks). Generally speaking, it is not possible to unambiguously identify "power engineering" undergraduate students.

Appendix Table 4 gives the undergraduate education program characteristics of the responding universities. Table 14 summarizes information about the education options for undergraduates in Canada and the US. About 70% of Canadian universities have mandatory courses in power engineering for all engineering students while 46% of US universities have mandatory courses for all students. The percentage of universities requiring a power course in the electrical engineering undergraduate curriculum decreased from an all-time high of about 80% in 1994 to about 65% in 2001-02 to about 59% in 2005-06. Almost all universities have undergraduate elective courses in power engineering. Those universities that do not offer elective courses do offer mandatory courses. Mandatory course for all students in a special track, minor, or certificate are offered at 30% of the Canadian universities and 43% of the US universities. Specific mandatory and elective courses are identified in Appendix Table 6.

Many universities offer special tracks, minors, or certificates beyond just an electrical engineering degree. Appendix Table 6 gives titles of those education opportunities. 40% of the Canadian universities and 28% of US universities offer a special track related to power engineering or power systems. Special tracks at 40 universities were in such areas as power, energy, systems, cyber security, smart grids, engineering management, renewable/sustainable energy, control, energy finance, power electronics, and electric drives. Certificates at 17 universities were (1) for power engineering or systems, (2) for a specialization within power engineering such as power system protection or power electronics, or (3) in broader areas such as renewable or sustainable energy. Minors at eight universities were in broader energy systems and energy resources areas while others were in specialty areas such as power electronics, renewables (e.g., solar and wind), and sustainable energy. In a few cases, universities appear to have reported on graduate rather than undergraduate certificates or minors in their responses.

Coop programs are designed to give industry experience to undergraduate students. As shown in Table 14, all Canadian universities and 70% of US universities offer coop opportunities. When a coop program is available, it is most frequently optional.

Offering	Ca	anada		US
	Ν	%	Ν	%
Mandatory courses for all students	7	70.0%	58	45.7%
Elective courses	9	90.0%	125	98.4%
Mandatory course for all students in a special track, minor, certificate, etc.	3	30.0%	52	42.6%
Special track	4	40.0%	36	28.3%
Minor	1	10.0%	7	5.5%
Certificate	0	0.0%	17	13.4%
Coop				
Available (optional)	8	80.0%	87	68.5%
Available (mandatory)	2	20.0%	2	1.6%
Not available	0	0.0%	38	29.9%

 Table 14. Undergraduate Education Programs

Graduate offerings for students interested in power engineering careers varied across the universities. Appendix Table 4 gives the graduate degree offerings reported by each university. Table 15 shows that all Canadian universities offered master's and doctoral degrees. In the US, 88% of universities offered master's degrees while 75% offered doctoral degrees. Online master's graduate degree opportunities exist at one university in Canada and 35 US universities while online doctoral degrees were reported to be available at 13 US universities.

Desmas	Ca	nada	1	US
Degree	Ν	%	Ν	%
Number of Responding Univ.	10	100%	127	100%
Offering Master's Degree	10	100%	112	88%
Offering Doctoral Degree	10	100%	95	75%
Offering Online Master's Degree	1	10%	35	28%
Offering Online Doctoral Degree	0	0%	13	10%

Table 15. Number of Universities Offering Graduate Degrees

Distance education has made inroads into the delivery of university education. Table 16 shows that 18% of universities had distance education undergraduate students and 32% had distance education graduate students in 2015-16. In terms of courses, as shown in Table 17, 9% of undergraduate courses and 28% of graduate courses had distance education students. Some courses had high numbers of distance education students, with about 4% of undergraduate courses and 12% of graduate courses having ten or more distance education students. University courses with distance education students enrolled are identified in Appendix Table 6.

Category	Ν	%
Undergraduate	24	18%
Graduate	43	32%
Total Responding Univ.	136	100%

Table 16. Number of Universities Reporting Distance Education Students

Table 17. Number of Courses with Distance Education Studen
--

Level	Total No. of CoursesTotal Courses with DistanceEducation Students		Courses with 10 or Education	r More Distance Students	
	Ν	Ν	%	Ν	%
Undergraduate	749	70	9.3%	29	3.9%
Graduate	809	224	27.7%	95	11.7%

V. STUDENT ENROLLMENTS

Appendix Table 5 gives student enrollment and degrees granted (or graduations) at each university. Student enrollments were classified by master's and doctoral, international vs. domestic, and part-time vs. full-time. No enrollment data were available for undergraduate students for the reasons discussed in Section IV. Fifteen responding universities reported zero graduate student enrollments.

Table 18 provides insights into various categories of enrolled graduate and undergraduate students.

- International students had the highest percentage of full-time graduate students, reaching as high as 78% and 73% of full-time doctoral students in the US and Canada respectively.
- Domestic students had the highest percentage of part-time students reaching 80% and 91% of master's students in the US and Canada respectively. Many of the part-time students were likely trying to get an advanced degree while working.
- Undergraduate students are predominantly domestic students. Canada and US universities estimated that a little over 80% of undergraduate students were domestic.

Category		nada	US	
Category	Ν	%	Ν	%
Master's Full-Time Domestic	93	41.7%	582	27.0%
Master's Full-Time International	130	58.3%	1575	73.0%
Total Master's Full-Time	223	100.0%	2157	100.0%
Master's Part-Time Domestic	120	90.9%	547	79.5%
Master's Part-Time International	12	9.1%	141	20.5%
Total Master's Part-Time	132	100.0%	688	100.0%
Doctoral Full-Time Domestic	48	27.1%	304	22.1%
Doctoral Full-Time International	129	72.9%	1072	77.9%
Total Doctoral Full-Time	177	100.0%	1376	100.0%
Doctoral Part-Time Domestic	3	100.0%	92	62.2%
Doctoral Part-Time International	0	0.0%	56	37.8%
Total Doctoral Part-Time	3	100.0%	148	100.0%
Average Estimated % of Enrolled		Q10 /		92 0/
Domestic Undergraduates		01%		03%

Table 18. Student Enrollments

Figures 6, 7, and 8 show average enrollment data from the 2015-16 and previous surveys to illustrate graduate student enrollment trends over time. The averages in the graphs were computed over the universities reporting a positive number of graduate students (doctoral and/or master's).

Figure 6 gives the average number of graduate students. The number of master's students declined from the mid-70s to the mid-80s, and then experienced a resurgence through the 1990s. After a decline shown in the 2005-06 survey, the average number of master's students more than doubled from 13.0 to 26.2 in the 2015-16 survey. The number of enrolled doctoral students has been growing since the 1990s, going from a low of 2.7 per university in 1993-94 to 14.0 average students per university in 2015-16.

Figure 7 gives the trends in number of domestic and international students. It shows that the average number of domestic students declined from early 1970s to a low of 7.3 in the 1987-88 survey. The average number of international graduate students did not exceed the number of domestic students until the 1985-86 survey. The resurgence in graduate students from 2005-6 to 2015-16 was mainly due to growth in the number of international students from 11.9 to 25.5 students per university (or 114%) whereas the average number of domestic graduate students grew more modestly from 9.2 to 14.7 (or 60%). The graph suggests that the number of domestic graduate students may have plateaued in recent years while the number of international students continued to grow.

Figure 8 gives the average number of full-time and part-time students. Until the mid-70s, there were actually more part-time than full-time graduate students. Perhaps this is due to an employment growth period for the industry as it responded to power system reliability problems in the late 1960s. As the industry moved into a period of sufficient generation capability in the late 70s and early 80s, hiring likely slowed so the average number of part-time students declined from the peak of 12.7 in 1975-76 to 4.8 in 1987-88.

The average number of full-time students has grown from the 80s (low of 10.3 in 1989-90) to 32.2 in 2015-16. Figure 7 suggests that much of this growth has been due to international students.

Figure 6. Average Number of Graduate Students Per University – Master's and Doctoral

Note: The averages were computed over all universities reporting a positive number of graduate students.

Figure 7. Average Number of Graduate Students Per University – Domestic and International

Note: The averages were computed over all universities reporting a positive number of graduate students.

Figure 8. Average Number of Graduate Students Per University - Full-Time and Part-Time

Note: The averages were computed over all universities reporting a positive number of graduate students.

Tables 19 and 20 provide a more detailed look at enrollment trends over the last ten years using data from three surveys. Table 19 gives the ten year graduate enrollment trends in Canada and the US. These metrics are total number of students divided by the number of universities with positive responses within a student category rather than the number with positive total graduate students as was used in Figures 6 through 8. For example, a university reporting a positive number of master's student enrollments but no doctoral enrollments would not have been included in the average of doctoral students given in Table 19, but would have been included in the averages given in the figures.

In the US, there has been about a doubling of the number of master's, international, and full-time students over the last ten years. In Canada there has also been strong growth in the number of master's students, domestic and international students, and part-time students. The extraordinary growth in master's and part-time students reported in Table 19 is mainly due to one Canadian university that was included in the 2015-16 survey, but not in the 2005-6 survey. That university commented that it had strong growth in an online master's program.

	Average					
Catagoria	Ca	nada	l I	US	Canada	US
Category	2005-6	2015-16	2005-6	2015-16	2005-6 to	2015-16
Master's	13.9 (7)	35.5 (10)	13.1 (82)	25.4 (112)	156%	94%
Doctoral	14.9 (7)	18.0 (10)	10.3 (61)	16.7 (91)	21%	62%
Domestic	14.1 (7)	26.4 (10)	10.3 (71)	14.5 (105)	87%	41%
International	14.6 (7)	27.1 (10)	13.1 (74)	26.1 (109)	86%	98%
Full-Time	26.1 (7)	40.0 (10)	16.8 (76)	32.7 (108)	53%	95%
Part-Time	3.6 (5)	19.3 (7)	9.1 (47)	10.7 (78)	436%	18%
All Grads	28.7 (7)	53.5 (10)	20.5 (83)	39.0 (112)	86%	90%

Table 19. Graduate Student Enrollments: Ten Year Trend

Note: In parentheses is the number of universities with positive values for each student category so the averages were computed over that number of universities. This differs from the averages in Figures 6-8 that were computed over the number of universities with positive total of all graduate students.

Table 20 summarizes the combined data for the US and Canada. Overall, 65.3% of graduate students were international in the 2015-16 survey as compared to 61.4% in the 2005-6 survey. Similarly 60.1% of all graduate students were international vs. 56.4% in the 2005-6 survey. Finally, 80.2% of the enrolled students were full-time in 2015-16 survey vs. 76.7% in the 2005-6 survey.

Graduate Student	2005-6	2015-16
Master's	61.4%	65.3%
Doctoral	38.6%	34.7%
International	56.4%	60.1%
Domestic	43.6%	39.9%
Full-Time	76.7%	80.2%
Part-Time	23.3%	19.8%

Table 20. Graduate Student Enrollment Percentages in 2005-6 and 2015-16

VI. DEGREES GRANTED

In surveys before the 2001-02 survey, universities were asked to report the number of graduate degrees granted. In the 2013-14 and 2015-16 surveys, respondents reported the estimated number of degrees conferred to students who were entering the power engineering career field whether in industry, government or academia. Estimates were needed rather than actual counts, particularly in the case of undergraduates who were getting an electrical engineering degree without any academic designation of career direction as noted in Section IV. Specifically, survey respondents were asked to estimate the number of degrees conferred (or graduating students) who were likely to pursue positions in electric power engineering. The wording of this survey data request is given in the text of the survey given in the Attachment. For consistency with past surveys, the terminology that be used in this report is "degrees granted".

Appendix Table 5 gives the estimated degrees granted for the 2015-16 survey for each university. Table 21 shows the aggregate data for the reported number of degrees granted, and averages for Canada and US universities. The average for a particular student category (e.g., undergraduate) was computed over the number of universities reporting a positive number of degrees granted within that category. Thus, the average for doctoral degrees granted does not include universities reporting zero doctoral degrees granted.

Catagory	2015	-16
Category	Canada	US
Total Reported Number of Students		
Undergraduate	410	2,669
Master's	181	1,268
Doctoral	91	352
Average Number of Degrees Granted		
Undergraduate	41.0	21.0
Master's	18.1	11.4
Doctoral	9.1	4.4
Number of Universities with Positive Number of Undergraduate Degrees Granted	10	127
Number of Universities with Positive Number of Master's Degrees Granted	10	111
Number of Universities with Positive Number of Doctoral Degrees Granted	10	81

Table 21. Estimated Degrees Granted to Students Entering Power Engineering Career Fields

Note: The average for a particular category only includes universities that had a positive number of degrees granted for that category.

Figure 9 summarizes the average number of degrees granted for graduate students over time. This average was computed over the universities with a positive number of master's and doctoral degrees awarded. For example, a university with zero doctoral degrees granted but a positive number of master's degrees granted would have been included in the computed average of doctoral degrees granted. Between 1993-94 and 2015-16, the average went from 5.5 to 11.9 for master's degrees and from 1.4 to 3.6 doctoral degrees granted. This is additional evidence of the large growth in the number of power engineering students.

Figure 9. Average Degrees Granted Across Universities Reporting Graduate Students

Note: The averages were computed over the universities with a positive number of total graduate degrees granted.

Of interest is the total estimated number of degrees granted in Canada and the US. The metric reported in Table 21 and Figure 9 only account for the reported degrees granted by the respondents to the 2015-16 survey. Generalizing the result to all universities with students likely to pursue power engineering careers cannot be done without knowing the total number of universities, a number which is not available, and an estimate of the number of degrees granted at all universities. However, fifteen universities responded to the 2013-2014 survey, but did not respond in the 2015-16 survey. Assuming that their reported graduation figures did not change from the figures reported in the 2013-14 survey, the total number of degrees granted can be adjusted to some extent. This revision is reported in Table 22.

The estimated graduations by domestic undergraduate students can be made using the university estimates of percentage of domestic undergraduate student enrollment given in Table 19. For instance, with an average of about

83% of undergraduate students in the US being domestic, the total estimated number of domestic undergraduate students pursuing power engineering careers that graduated in 2015-16 would be about 2,400 (that is, 83% of 2,889).

Table 22. Estimated Degrees Granted in 2015-16 Adjusting for Degrees Granted at Universities that Participated in the 2013-14 Survey but not the 2015-16 Survey*

Catagory		Canada			US		
Category	2015-16	Adjustment	Total	2015-16	Adjustment	Total	
Undergraduates Total	410	10	420	2669	220	2889	
Master's Total	181	3	184	1268	94	1362	
Doctoral Total	91	0	91	352	13	365	

*The reported degrees granted by 137 universities in the 2015-16 survey were adjusted by adding 15 responses from the 2013-14 survey that were not in the 2015-16 survey. This results in estimated degrees granted based on a total of 11 Canadian and 141 US universities.

The size of student populations varies considerably across universities as shown in Table 23.

- The median values are approximately 19, 9, and 4 for undergraduate, master's, and doctoral students respectively.
- 18% of universities reported 40 or more undergraduate degrees grants.
- 18% of universities reported 20 or more master's degrees granted.
- 20% of universities reported seven or more doctoral degrees granted.

Under	Undergraduate			Master's			octora	al
Number	Ν	%	Range	Ν	%	Range	Ν	%
1-9	36	26%	1-4	37	31%	1-2	25	27%
10-19	34	25%	5-9	30	25%	3-4	26	29%
20-29	26	19%	10-14	16	13%	5-6	22	24%
30-39	17	12%	15-19	16	13%	7-8	9	10%
40+	24	18%	20+	22	18%	9+	9	10%
Total	137	100%	Total	121	100%	Total	91	100%

 Table 23. Distribution of Degrees Granted Per University

As noted in Section II, the number of instructional faculty and staff rose substantially over the last ten years. This result is reflected in the finding shown in Table 24 that the average number of faculty and staff rose as the number of degrees granted at a university rose. The total number of degrees granted is the sum of degrees granted to undergraduate and graduate students. Some 27 (or 20%) of universities had a range of total degrees granted between one and 10. They averaged 1.9 faculty and staff. On the other hand, six universities reporting more than 100 degrees granted averaged 7.7 faculty and staff. Table 24 also illustrates the wide range in sizes of university programs in electric power engineering. The number of faculty and staff needed to support student education will depend upon the mix of undergraduate and graduate students with graduate students typically using more time of faculty and staff than undergraduate students.

Total Number of Undergraduate and Graduate Degrees Granted	Number of Universities	%	Average No. of Faculty and Staff
1-10	27	19.7%	1.9
11-20	23	16.8%	3.7
21-30	25	18.2%	5.3
31-50	28	20.4%	6.1
51-100	28	20.4%	6.6
>100	6	4.4%	7.7
All	137	100%	4.9

 Table 24. Average Number of Faculty and Staff Per Number of Degrees Granted at each University

As noted in Section I, determining near term trends is difficult because, in part, to factors unrelated to the underlying data trends, such as differences in which universities responded to the surveys. To examine the near-term trend in student enrollments and graduations, growth rates between 2013-14 and 2015-16 were calculated just using universities that responded to both surveys. The results are given in Table 25.

- For universities in both surveys, the strongest growth in estimated number of degrees granted was in Canadian doctoral students (22.9%) and US undergraduate students (9.1%).
- In terms of enrollments, both Canadian and US universities had high growth rates of 24.8% and 4.6% respectively for international graduate students.
- Both experienced declines in enrollments of domestic graduate students at a negative 5.1% for Canadian universities and a negative 4.5% for US universities. The decline appears to be mainly due to a decline in enrolled domestic master's students; the number of domestic doctoral students is about level.
- With graduate student enrollments of part-time students not changing at Canadian universities and declining by almost 10% at US universities, it appears that interest in getting advanced power engineering degrees may be waning among people who are already employed. This could be a result of greater job security in a stronger US economy.
- Overall, the average number of graduate student enrollments increased 8.5% in Canada and just 1.1% in the US for those universities in both surveys.

It is worth repeating that Canadian metrics will be volatile due to the low number of responding universities (e.g., nine universities in most categories in this analysis).

	Car	ada	US		% Change		Ν	
Category	Cal	laua	U	6	Canada	US	Canada	US
	2013-14	4 2015-16 2013-14 2015-16		Callaua	05	Callaua	05	
Average Graduation Rates								
Undergraduates	36.4	36.7	19.3	21.1	0.6%	9.1%	9	108
Master's	19.0	19.6	11.4	11.7	2.9%	2.5%	9	95
Doctoral	7.8	9.6	4.3	4.5	22.9%	4.0%	9	76
Average Enrollments								
Master's	36.6	38.1	25.4	25.2	4.3%	-0.8%	9	96
Doctoral	15.8	18.7	16.9	17.2	18.3%	2.0%	9	83
Domestic Grad	28.6	27.1	15.2	14.5	-5.1%	-4.5%	9	91
International Grad	23.8	29.7	25.7	26.9	24.8%	4.6%	9	94
Full-Time	37.3	41.8	33.3	34.6	11.9%	3.9%	9	93
Part-Time	19.3	19.3	10.5	9.5	0.0%	-9.7%	7	66
All Grads	52.3	56.8	39.6	40.1	8.5%	1.1%	9	96

Table 25. Growth Rates in Degrees Granted and Enrollments for Universitiesin both the 2013-14 and 2015-16 Surveys

Note: Averages in each category were computed over universities with positive (non-zero) responses in that category. The "N" is the number of universities over which the averages were computed in 2015-16. The number of universities in 2013-14 may slightly differ due to zero responses in a category.

One of the ways to sustain student interest in power engineering is to help with recruiting high school students. Table 26 summarizes the university responses to the question "Did power faculty participate in any power-related outreach events designed to attract K-12 students into the power engineering career field or to help K-12 teachers?" 40% of the Canadian universities and 71% of the US universities reported participation.

 Table 26. Universities with Power Faculty Working to Attract K-12 Students or to Help K-12 Teachers

Canad	a Only	US C	Only	
Ν	%	N %		
4	40%	90	71%	

VII. COURSES

Appendix Table 6 gives the reported electric power engineering course offerings of each responding university. 749 undergraduate and 809 graduate courses were reported by 136 responding universities (with 134 providing undergraduate course information). For each course, the table gives the course title, undergraduate or graduate level, frequency with which it is offered, whether the course is mandatory or an elective, credit hours, whether there is lab associated with the course, and class enrollments by in-class, distance education, and total students.

The number of undergraduate students in courses with the highest enrollment at each university provides an indicator of interest in power engineering and of exposure of engineering students to power engineering concepts. This metric is available from past surveys. Table 27 summarizes the highest enrollment classes (one per university) for the 2015-16 survey. Almost 7,500 students were reported to have participated in one of the classes. The highest enrollment classes at 66 of the 134 universities reporting undergraduate course information were mandatory so they attracted undergraduate students who may or may not have been interested in power engineering as a career. The trend in size of the highest enrollment classes is illustrated in Figure 10. The rising average of students in the highest enrollment classes is further evidence that student interest has grown over the ten years from the 2005-6 survey to the 2015-16 survey.

Table 27. Undergraduate Classes with Highest Enrollment at a University

Category	Ν
Number of Universities Reporting Undergrad Course Data	134
Total Number of Students in Highest Enrollment Classes	7,488
Number of Mandatory Classes with Highest Enrollment	66
Average Highest Enrollment Class Size	55.9
Highest Enrollment Class Size Over All Universities	334

Figure 10. Average Number of Students in Elective Undergraduate Power Classes with Highest Enrollment at Each University

The size and course titles of the 14 largest classes reported in the 2015-16 survey are given in Table 28.

- There were on common electrical engineering topics (power/electric circuits, electromechanics, machines, basic electronics and electric power).
- Four were on (electric) energy systems.
- Three were on green or sustainable energy, or energy and society.
- Three were on power engineering or power systems.

Of course, based on the survey responses alone, it is not possible to characterize the high enrollment courses in any more detail than what is suggested by the course titles. Beyond the basic courses, it is interesting to see the student interest in broader technological and policy areas, such as renewable energy. Eight of the 14 classes were mandatory.

University	Course Title	Class Size
University of Illinois at Urbana-Champaign	Power Circuits and Electromechanics (elective)	334
Georgia Institute of Technology	Electric Energy Systems (mandatory)	250
Purdue University, West Lafayette	Electromechanics (elective)	250
University of Arkansas	Electric Circuits and Machines (elective)	223
University of Saskatchewan	Basic Electronics & Electric Power (mandatory)	211
University of Illinois at Urbana-Champaign	Green Electric Energy (elective)	181
Ohio State University	Sustainable Energy and Power Systems I (mandatory)	180
University of California, Berkeley	Energy and Society (elective)	180
University of Calgary	Energy Systems (mandatory)	170
Arizona State University	Energy Systems and Power Electronics (mandatory)	160
McGill University	Power Engineering (mandatory)	150
University of Toronto	Fundamentals of Electrical Energy Systems (elective)	150
University of Alberta	Introduction of Power Engineering (mandatory)	120
University of Waterloo	Power Systems and Components (mandatory)	120

Table 28. Largest Undergraduate Classes

Details about all 749 undergraduate and 809 graduate course topics are not available in the survey responses. Some insights into the focus of the courses can be found by examining word counts for selected keywords and their derivatives. For instance, a search for "Communication" would include counts of "Communications." The results of this analysis are given in Table 29. For the selected keywords, "power system" is not surprisingly the most common. Words associated with broader concepts in today's electric power industry, such as "smart" from smart grid or "policy", are much less frequently observed. However, it may well be that such topics are taught as part of fundamental power engineering courses.

Keyword	Number of Undergraduate Course Title Occurrences	Number of Graduate Course Title Occurrences
Communication	2	7
Distributed	4	14
Economic	5	15
Electronic	130	102
Energy System	56	39
Machine	52	44
Policy	1	1
Power System	217	271
Renewable	23	22
Smart	21	36
Solar	6	7
Storage	3	5
Sustainable	14	14
Vehicle	9	6
Wind	4	14

 Table 29. Course Topics Based on Occurrence of Selected Keywords in 749 Undergraduate and 809 Graduate Course Titles

VIII. PERSPECTIVES ON WHY STUDENT ENROLLMENTS INCREASED OVER THE LAST TEN YEARS

The Survey Team contacted a few of the universities with the highest student counts and asked them why their programs had grown so much over the last ten to fifteen years. Most of the responses pertained to graduate students, but some to undergraduate students as well.

University 1

- The online and full-time Master of Engineering programs are a good part of the reason.
- More successful research grants/contracts by the faculty. Most of the faculty are IEEE Fellows.

University 2

- Increased funding of research projects by industry (especially through an Industry/University Cooperative Research Center), other National Science Foundation efforts, and US Department of Energy. This stimulus came from, in part, new faculty hires into the program bringing expertise, energy and willingness to compete in large research efforts. Also, generous support of educational efforts by local industry in the form of equipment and other assets.
- A significant international growth in technologies that relate to wind and solar energy resources. This encourages students to work in this field, and it provides new problem areas for faculty research.
- Commitment by university and departmental administration (e.g., energetic hiring in the power area with a firm commitment to the area, naming power/energy as a targeted priority area campus-wide).
- Considerable growth of online educational programs in power engineering.
- Better inclusion of relatively new topic areas into the educational and research programs (e.g., power electronics, power markets). This was largely done by new faculty hires in these areas.
- Significant growth of a diversified job market in power engineering, substantially expanding traditional employers (e.g., software developers, employers that focus on renewable resources, the Independent System Operators, electronics manufacturers)
- Publicity and professional society activities by our faculty, and holding professional society meetings on campus.
- Stimulus in the undergraduate educational program (e.g., revision of traditional undergraduate courses, funds for students to participate in conferences, capstone design projects in power engineering, IEEE PES scholarship money).

University 3

- Increased level of research funding by involved faculty and the building of research facilities such as a smart grid testbed and solar facilities
- The leadership and record of the involved faculty
- The international programs and collaborative agreements with several countries
- The graduate school and the scholarship support provided to students.

IX. CONCLUSIONS

This report provides information on education resources in the US and Canada for the 2015-16 academic year. It shows that there have been demonstrable changes in power engineering education over the last ten years, including:

- Substantial growth in student enrollments and graduations, particularly by international students in graduate programs
- Growth in the number of faculty in all ranks, but particularly tenure-track assistant professors
- Expanded use of adjunct professors and lecturer/instructors who were likely needed to meet the new instructional needs brought about by more students and by technological changes in the industry
- Strong growth in research funding by government, funding by utilities that has more than kept pace with inflation, and continuation of a longer-term trend of increased funding by non-utility domestic industries that are playing a greater role in today's diversified electric power industry
- Use of distance education that expands the ways that education is delivered
- Diversification of the engineering curriculum into non-traditional topics, such as sustainable energy.

The survey results suggest that three key challenges in university power engineering education are:

- Maintaining sufficient research funding needed to sustain innovation to advance electric power and energy technologies, and to support young faculty members who will eventually replace retiring faculty
- Motivating domestic students to pursue graduate degrees with a focus on power engineering
- Evolving curricula to address the challenges and changes facing the evolving electric power industry.

The IEEE, the Power & Energy Society, and the Power & Energy Education Committee do not intend to communicate any value judgment as to the quality of any program included in the report. The Survey Team feels that, although data is part of making value judgments, other factors not reducible to metrics are vital considerations in evaluating electric power engineering programs.

REFERENCES

- [1] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1969-1970, IEEE Transactions, PAS Vol. 91, No. 1, pp. 277-283, January-February 1972.
- [2] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1971-1972, IEEE Transactions, PAS Vol. 93, N. 2, pp. 529-534, March-April 1974.
- [3] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1973-1974, IEEE Transactions, PAS Vol. 95, No. 4, pp. 1194-1201, July-August 1976.
- [4] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1975-1976, IEEE Transactions, PAS Vol. 97, No. 3, pp. 802-809, May-June 1978.
- [5] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1977-1978, IEEE Transactions, PAS Vol. 100, No. 2, pp. 721-728, February 1981.
- [6] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1979-1980, IEEE Transactions, PAS Vol. 100, No. 11, pp. 4456-4463, November 1981.
- [7] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1981-1982, IEEE Transactions, PAS Vol. 103, No. 5, pp. 921-932, May 1984.
- [8] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1985-1986, IEEE Transactions, PAS Vol. 3, No. 3, pp. 1340-1353, August 1988.
- [9] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1987-1988, IEEE Transactions on Power Systems, Vol. 6, No. 2, pp. 379-392, February 1991.
- [10] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1989-1990, IEEE Transactions on Power Systems, Vol. 7, No. 4, pp. 1611-1622, November 1992.
- [11] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1991-1992, IEEE Transactions on Power Systems, Vol. 9, No. 3, pp. 1182-1193, August 1994.
- [12] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 1993-1994, IEEE Transactions on Power Systems, Vol. 11, No. 3, pp. 1146-1158, August 1996.
- [13] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 2001-2002, IEEE Transactions on Power Systems, Vol. 19, No. 4, pp. 1703-1722, November 2004.
- [14] IEEE Power Engineering Society Committee Report, Electric Power Engineering Education Resources, 2005-2006, IEEE Transactions on Power Systems, Vol. 23, No. 1, pp. 1-24, February 2008.
- [15] Power and Energy Education Committee Survey Team of the IEEE PES Power and Energy Society. "University Education and Research Programs in the U.S. and Canada for Power and Energy Engineering Careers: Self-Reported Information from the 2013-2014 University Survey by the Power & Energy Education Committee of the IEEE Power & Energy Society." April 2015 (unpublished). See also "State of Power Engineering Education in the U.S. and Canada: Overview of the Results of the 2013-2014 PEEC Survey." PES Webinar (http://resourcecenter.ieee-pes.org/pes/product/webinars/PESVID1267). June 2, 2015.

APPENDIX

University	State/Province	Country	Survey Contact	College/School	Lead Department	Research Centers
Arizona State University	Arizona	US	Gerald Heydt	Engineering	Electrical, Computer and Energy Engineering	Quantum Energies and Sustainable Solar Technologies (QESST), Future Renewable Electric Energy Distribution Management Center (FREEDM), Power Systems Engineering Research Center, Power America
Auburn University	Alabama	US	Mark Nelms	Samuel Ginn College of Engineering	Electrical & Computer Engineering	
Baylor University	Texas	US	Kwang Lee	School of Engineering and Computer Science	Electrical and Computer Engineering	Renewable Energy Lab, Power and Energy Systems Lab
Boise State University	Idaho	US	Said Ahmed-Zaid	College of Engineering	Electrical and Computer Engineering	
Buffalo State - State University of New York	New York	US	Ilya Grinberg	Engineering Technology	Engineering Technology	
California Polytechnic State University, San Luis Obispo	California	US	Taufik Taufik	College of Engineering	Electrical Engineering	Electric Power Institute
California State University, Fresno	California	US	Nagy Bengiamin	Lyles College of Engineering	Electrical and Computer Engineering	
California State University, Northridge	California	US	Bruno Osorno	College of Engineering and Computer Science	Electrical and Computer Engineering	
California State University, Sacramento	California	US	Mahyar Zarghami	College of Engineering and Computer Science	Electrical and Electronic	
Carnegie Mellon University	Pennsylvania	US	Marija Ilic	College of Engineering	Electrical and Computer Engineering	Electric Energy Systems Group, Carnegie Mellon Electricity Industry Center, Power Systems Engineering Research Center,
Case Western Reserve University	Ohio	US	Mingguo Hong	Case School of Engineering	Electrical Engineering and Computer Science	Great Lake Energy Institue
Clarkson University	New York	US	Thomas Ortmeyer	Coulter School of Engineering	Electrical and Computer	
Clemson University	South Carolina	US	Keith Corzine	College of Engineering, Computing and Applied Sciences	Electrical and Computer Engineering	Real-Time Power and Intelligent Systems Laboratory, Power and Energy Systems Focus Area, Clemson University Electrical Power Research Association (CUEPRA)
Cleveland State University	Ohio	US	Hongxing Ye	Washkewicz College of Engineering	Electrical and Computer Engineering	
Colorado School of Mines	Colorado	US	Salman Mohagheghi	College of Engineering and Computational Sciences	Electrical Engineering and Computer Science	Power Systems Engineering Research Center
Colorado State University	Colorado	US	Siddharth Survanaravanan	Walter Scott, Jr. College of Engineering	Electrical and Computer Engineering	Advanced Power Engineering Laboratory (APEL), Energy Institute
Concordia University	Quebec	Canada	Pragasen Pillay	Faculty of Engineering & Computer Science	Electrical and Computer Engineering	x // · · · · · · · · · · · · · · · · · ·
Cornell University	New York	US	Eilyan Bitar	College of Engineering	School of Electrical and Computer Engineering	David R. Atkinson Center for a Sustainable Future (ACSF), Power Systems Engineering Research Center (PSERC)
Drexel University	Pennsylvania	US	Dagmar Niebur	College of Engineering	Electrical and Computer Engineering	Institute for Energy and the Environment, Center for Electric Power Engineering
FAMU-FSU College of Engineering	Florida	US	Omar Faruque	College of Engineering	Electrical and Computer Engineering	Center for Advanced Power Systems
Florida International University	Florida	US	Osama Mohammed	College of Engineering and Computing	Electrical and Computer Engineering	Energy Systems Research Laboratory
Gannon University	Pennsylvania	US	Lin Zhao	College of Engineering and Business	Electrical and Computer	
Georgia Institute of Technology	Georgia	US	Ronald Harley	College of Engineering	School of Electrical and Computer Engineering	
Gonzaga University	Washington	US	Peter McKenny	School of Engineering and	Electrical and Computer	Transmission and Distribution Program
Howard University	District of Columbia	US	James Momoh	College of Engineering, Architecture, and Computer Sciences	Electrical and Computer Engineering	Center for Energy Systems and Control (CESaC), Power Systems Engineering Research Center
Illinois Institute of Technology	Illinois	US	Zuyi Li	Armour College of Engineering	Electrical and Computer Engineering	Robert W. Galvin Center for Electricity Innovation
Indiana University - Purdue University Indianapolis	Indiana	US	Steven Rovnyak	School of Engineering and Technology	Electrical and Computer Engineering	Richard G. Lugar Center for Renewable Energy
Iowa State University	Iowa	US	Venkataramana Ajjarapu	College of Engineering	Elelctrical and Computer	Power Systems Engineering Research Center, Electric Power Research Center
John Brown University	Arkansas	US	Ted Song	John Brown University	Engineering	
Kansas State University	Kansas	US	Anil Pahwa	College of Engineering	Electrical and Computer	Electric Power Affiliate Program
Kennesaw State University	Georgia	US	Bill Diong	College of Engineering and	Electrical Engineering	Alternative Energy Innovation Center
Lake Superior State University	Michigan	US	Paul Weber	School of Engineering &	Electrical and Computer	
Lamar University	Texas	US	Reza barzegaran	College of Engineering	Engineering Electrical Engineering	Lamar Renewable Energy Microgrid
Lawrence Technological University	Michigan	US	Richard Johnston	College of Engineering	Electrical and Computer	Laboratoly
Louisiana State University and	Louisiana	US	Amin Kargarian	College of Engineering	Electrical and Computer	Center of Energy Studies, Electric Power And
Marquette University	Wisconsin	US	Edwin Yaz	College of Engineering	Electrical and Computer	Energy Gloup (EFEG)
					Linginooring	

Appendix Table 1. Universities Responding to the 2015-2016 PEEC Survey

University	State/Province	Country	Survey Contact	College/School	Lead Department	Research Centers
Massachusetts Institute of	Massachusetts	US	David Perreault	School of Engineering	Electrical Engineering and	MIT Energy Initiative, MIT Microsystems
Technology					Computer Science	Electromagnetic and Electronic Systems, MIT
						Power Electronics Research Group, MIT Research Laboratory of Electronics
McGill University	Quebec	Canada	Francois Bouffard	Faculty of Engineering	Electrical and Computer	Institute of Electric Power Engineering
Memorial University of	Newfoundland	Canada	Benjamin Jeyasurya	Faculty of Engineering and	Electrical and Computer	
Newfoundland Miami University	and Labrador Ohio	US	Mark Scott	Applied Science College of Engineering and	Engineering Electrical and Computer	Miami University's Power and Energy Research
wiann Oniversity	Onio	05	Mark Scou	Computing	Engineering	Laboratory
Michigan State University	Michigan	US	Joydeep Mitra	College of Engineering	Electrical and Computer Engineering	
Michigan Technological University	Michigan	US	Leonard Bohmann	College of Engineering	Electrical Engineering	Center for Agile and Interconnected Microgrids (AIM), Power and Energy Research Center
Minnesota State University,	Minnesota	US	Vincent Winstead	College of Science,	Electrical and Computer	(PERC)
Mankato Mississinni State University	Mieciccippi	US	Vong Fu	Engineering & Technology Bagley College of	Engineering and Technology	Institute of Clean Energy Technology
inisissippi state eniversity	111331331001	05	Tong Tu	Engineering	Engineering	misinate of clean Energy Teennology
Missouri University of Science and Technology	Missouri	US	Mehdi Ferdowsi	Engineering	Electrical and Computer Engineering	
Montana State University, Bozeman	Montana	US	Hashem Nehrir	Engineering	Electrical and Computer	
New Jersey Institute of Technology	New Jersey	US	Mengchuu Zhou	Newark College of	Electrical and Computer	
New Mexico State University	New Mexico	US	Sukumar Brahma	Engineering College of Engineering	Engineering Klipsch School of Electrical	Electric Utility Management Program, CREST
	new meneo	00		conogo or Engineering	Computer Engineering	Interdisciplinary Center of Research Excellence in Design of Intelligent Technologies for Smart Grids (ICREDITS)
New York University Polytechnic	New York	US	Francisco De Leon	Tandon School of	Electrical and Computer	
North Carolina State University at	North Carolina	US	Mesut Baran	College of Engineering	Electrical and Computer	CAPER (Center for Advanced Power
Raleigh					Engineering	Engineering Research), FREEDM (Future Renewable Electric Energy Delivery and Management) Systems Center
North Dakota State University	North Dakota	US	Rajesh Kavasseri	College of Engineering	Electrical and Computer	
Northeastern University	Massachusetts	US	Ali Abur	College of Engineering	Electrical and Computer	CURENT ERC Partner School
Northern Arizona University	Arizona	US	Venkata Yaramasu	College of Engineering.	Engineering School of Informatics.	
				Forestry, and Natural Sciences	Computing, and Cyber Systems	
Ohio Northern University	Ohio	US	Srinivasa Vemuru	College of Engineering	Electical and Computer Engineering and Computer Science	
Ohio State University	Ohio	US	Jin Wang	College of Engineering	Electrical and Computer	Center for High Performance Power Electronics
Oklahoma State University	Oklahoma	US	Rama Ramakumar	College of Engineering	School of Electrical and	Engineering Energy Laboratory
Old Dominion University	Virginia	US	Yucheng Zhang	Batten College of	Electrical and Computer	Power Research Lab
Oregon State University	Oregon	US	Eduardo Cotilla-	Engineering & Technology College of Engineering	Engineering Electrical Engineering and	Cyber Resilient Energy Delivery Consortium.
			Sanchez		Computer Science	Northwest National Marine Renewable Energy Center
Pennsylvania State University,	Pennsylvania	US	Peter Idowu	School of Science,	Electrical Engineering	PPL Electric Utilities Power Laboratory
Portland State University	Oregon	US	Robert Bass	Maseeh College of	Electrical & Computer	
				Engineering & Computer Science	Engineering	
Purdue University Northwest	Indiana	US	Constantin	College of Engineering and	Electrical and Computer	Power and Energy Systems
Purdue University, West Lafayette	Indiana	US	Dionysios Aliprantis	College of Engineering	School of Electrical and	
Rensselaer Polytechnic Institute	New York	US	Joe Chow	School of Engineering	Electrical, Computer, and	New York State Center of Future Energy
					Systems Engineering	Systems, NSF/DOE CURENT Engineering
Ryerson University	Ontario	Canada	Amirnaser Yazdani	Faculty of Engineering and	Electrical and Computer	Centre for Urban Energy (CUE)
San Jose State University	California	US	Ping Hsu	Architectural Science College of Engineering	Engineering Electrical Engineering	
Santa Clara University	California	US	Maryam Khanbaghi	School of Engineering	Electrical Engineering	Sustainable Energy Program
Seattle University	Washington	US	Henry Louie	Science and Engineering	Electrical and Computer	
South Dakota School of Mines and	South Dakota	US	Scott Rausch	South Dakota School of	Engineering Electrical & Computer	
Technology South Dakota State University	South Dalasta	US	Poinaldo Tonkost-	Mines & Technology	Engineering	Contar for Dowar Systems Studios
South Dakota State University	South Dakota	US	reinaido Tonkoski	Engineering	Electrical Engineering and Computer Science	Center for Power Systems Studies
Suffolk University	Massachusetts	US	Lisa Shatz	School of Arts and Science	Engineering	Technology and Science Initiative
Syracuse University	New York	US	Prasanta Ghosh	College of Engineering and	Electrical Engineering and	
Temple University	Pennsylvania	US	Saroj Biswas	College of Engineering	Electrical and Computer	
Tennessee State University	Tennessee	US	Satinderpaul	College of Engineering	Engineering Electrical and Computer	Master of Engineering with emphasis in
Toxos A&M University	Toyoc	US	Devgan Homid Taliunt	Engineering	Engineering	Electrical Power Systems
I CAAS ACTIVI UNIVERSITY	1 exas	03	riannu ronyat	Engineering	Engineering	Research Center

University	State/Province	Country	Survey Contact	College/School	Lead Department	Research Centers
Texas Tech University	Texas	US	Michael Giesselmann	Edward E. Whitacre College of Engineering	Electrical and Computer	
Tufts University	Massachusetts	US	Alex Stankovic	College of Engineering	Electrical and Computer	
United States Military Academy	New York	US	Aaron St. Leger	United States Military	Electrical Engineering and	
University of Alabama at	Alabama	US	David Green	Academy School of Engineering	Computer Science Electrical and Computer	
Birmingham University of Alaska Fairbanks	Alaska	US	Richard Wies	College of Engineering and	Engineering Electrical and Computer	Institute of Northern Engineering Alaska
University of Alberta	Allerate	Consta	Weakete Discould	Mines	Engineering	Center for Energy and Power
University of Alberta	Alberta	Canada	venkata Dinavani	Faculty of Engineering	Engineering	
University of Arkansas	Arkansas	US	Yue Zhao	College of Engineering	Electrical Engineering	Cybersecurity Center for Secure Evolvable Energy Delivery Systems, Power Optimization of Electro-Thermal Systems, National Center for Reliable Electric Power Transmission, High Density Electronics Center, Vertically Integrated Center for Transformative Energy Research, Center for Grid Connected Advanced Power Electronics
University of Calgary	Alberta	Canada	Majid Pahlevani	Schulich School of Engineering	Electrical and Computer Engineering	Cpower Lab (Calgary Power Electronic Lab)
University of California, Berkeley	California	US	Josephine Williamson	College of Engineering	Electrical Engineering and Computer Sciences	SinBerBEST, Department of Nuclear Engineering, Energy Biosciences Institute, Center for Information Technology Research in the Interest of Society, Center for Research in Energy Systems Transformation, Energy and Resources Group, Power Systems Engineering Research Center
University of California, Los Angeles	California	US	Rajit Gadh	Henry Samueli School of Engineering and Applied Science	Mechanical and Aerospace Engineering	
University of Central Florida	Florida	US	Zhihua Qu	Engineering and Computer	Electrical and Computer	FEEDER center
University of Denver	Colorado	US	David Gao	Ritchie School of	Electrical and Computer	
				Engineering and Computer Science	Engineering	
University of Houston	Texas	US	Masoud Barati	Cullen College of Engineering	Electrical and Computer Engineering	Electric Power Analytics Consortium
University of Idaho	Idaho	US	Brian Johnson	College of Engineering	Electrical and Computer	
University of Illinois at Urbana- Champaign	Illinois	US	Peter Sauer	College of Engineering	Electrical and Computer Engineering	Power Affiliates Program, Grainger Center for Electric Machinery and Electromechanics (CEME), Power Systems Engineering Research Center (PSERC)
University of Kentucky	Kentucky	US	Yuan Liao	College of Engineering	Electrical and Computer Engineering	Power and Energy Institute of Kentucky
University of Maine	Maine	US	Paul Villeneuve	College of Engineering	School of Engineering Technology / Electrical and Computer Engineering	
University of Maryland College Park	Maryland	US	Alireza Khaligh	A. James Clark School of Engineering	Electrical and Computer	
University of Memphis	Tennessee	US	Mohd Hasan Ali	College of Engineering	Electrical and Computer	
University of Michigan – Dearborn	Michigan	US	Wencong Su	College of Engineering and Computer Science	Engineering Electrical and Computer Engineering	The Institute for Advanced Vehicle Systems (IAVS), DTE Power Electronics and Electric Drive Laboratory, DOE GATE Center for Electric Drive Transportation, Smart Grid Laboratory
University of Michigan, Ann Arbor	Michigan	US	Ian Hiskens	College of Engineering	Electrical Engineering and	Michigan Power and Energy Laboratory
University of Minnesota -Twin	Minnesota	US	Ned Mohan	College of Science and	Electrical and Computer	
University of Missouri – Columbia	Missouri	US	Gayla Neumeyer	College of Engineering	Electrical and Computer	Energy Systems & Resources Program (ESRP),
University of Missouri - Kansas City	Missouri	US	Kevin Kirkpatrick	School of Computing and	Engineering Computer Science Electrical	Power Electronics Research Center (PERC) Missouri Center for Advanced Power (MCAP)
University of Nebraska – Lincoln	Nebraska	US	Sohrab Asgarpoor	Engineering College of Engineering	Engineering Electrical and Computer	Lab Power and Energy Systems Laboratory
University of Nevada Reno	Nevada	US	Hanif Livani	College of Engineering	Engineering Electrical and Biomedical	Electric Drives Laboratory, Electrical Power
emversity of reviau, reno	rtevada	00		Conce of Engineering	Engineering	and Renewable Energy System Research Laboratory
University of New Haven	Connecticut	US	Junhui Zhao	Tagliatela College of Engineering	Electrical and Computer Engineering and Computer Science	
University of North Carolina at Charlotte	North Carolina	US	Badrul Chowdhury	William States Lee College of Engineering	Electrical & Computer Engineering	The Center on Grid Engineering Education, Energy Production & Infrastructure Center (EPIC)
University of North Dakota	North Dakota	US	Hossein Salehfar	College of Engineering and Mines	Electrical Engineering	Renewable Hydrogen H2Power Laboratory, Secure Cyber Physical Systems and Data Sciences Lab, Renewable Energy Systems Laboratory at University of North Dakota
University of Oklahoma	Oklahoma	US	John Jiang	Gallogly College of	Electrical & Computer	
University of Pittsburgh	Pennsylvania	US	Gregory Reed	Swanson School of	Electrical and Computer	Center for Energy, Energy GRID Institute,
University of Saskatchewan	Saskatchewan	Canada	Ramakrishna	College of Engineering	Electrical & Computer	Electric rower rower systems Lab
			(Rama) Gokaraju		Engineering	

University	State/Province	Country	Survey Contact	College/School	Lead Department	Research Centers
University of South Carolina	South Carolina	US	Roger Dougal	College of Engineering and Computing	Electrical Engineering	NSF I/UCRC for Grid-connected Advanced Power Electronic Systems
University of South Florida	Florida	US	Lingling Fan	College of Engineering	Electrical Engineering	
University of Southern Maine	Maine	US	Carlos Luck	College of Science,	Engineering	
				Technology, and Health		
University of St. Thomas	Minnesota	US	Prof. Greg Mowry	School of Engineering	School of Engineering	REAL; the Renewable Energy and Alternatives Laboratory
University of Tennessee, Chattanooga	Tennessee	US	N Sisworahardjo	College of Engineering & Computer Science	Electrical Engineering	
University of Tennessee, Knoxville	Tennessee	US	Hector Pulgar	College of Engineering	Electrical Engineering and Computer Science	Oak Ridge National Laboratory, Graduate Wide Bandgap Traineeship, Center for ultra- wide area resilient electric energy transmission networks
University of Texas at Arlington	Texas	US	Ali Davoudi	College of Engineering	Electrical Engineering	
University of Texas at Austin	Texas	US	Ross Baldick	Cockrell School of Engineering	Electrical and Computer Engineering	Center for Electromechanics
University of Texas at El Paso	Texas	US	Paras Mandal	College of Engineering	Electrical and Computer Engineering	
University of Texas at San Antonio	Texas	US	Hariharan Krishnaswami	College of Engineering	Electrical and Computer Engineering	Texas Sustainable Energy Research Institute
University of the Pacific	California	US	Cherian Mathews	School of Engineering and	Electrical and Computer	
University of Toronto	Ontario	Canada	Zeb Tate	Faculty of Applied Science	Electrical and Computer	
University of Hel	U. l	LIC	Manual Damania	& Engineering	Engineering	U. Smoot (U. b. Smoot France Lab.)
University of Utan	Utan	05	Masood Parvania		Engineering	U-Smart (Utan Smart Energy Lab)
University of Vermont	Vermont	US	Paul Hines	College of Engineering and Mathematical Sciences	Electrical and Biomedical Engineering	The Energy Systems Laboratory in Vermont (TESLa-VT), UVM Smart Grid IGERT program
University of Washington	Washington	US	Daniel Kirschen	College of Engineering	Electrical Engineering	Electric Energy Industrial Consortium
University of Waterloo	Ontario	Canada	Claudio Canizares	Faculty of Engineering	Electrical and Computer Engineering	Waterloo Institue for Sustainable Energy (WISE)
University of West Florida	Florida	US	Bhuvana Ramachandran	College of Science and Engineering	Engineering	
University of Western Ontario	Ontario	Canada	Rajiv Varma	Faculty of Engineering	Electrical and Computer Engineering	
University of Wisconsin - Madison	Wisconsin	US	Christopher DeMarco	College of Engineering	Electrical and Computer Engineering	Wisconsin Public Utilities Institute, Wisconsin Energy Institute, Wisconsin Electric Machines and Power Electronics Consortium, Power Systems Engineering Research Center
University of Wisconsin - Milwaukee	Wisconsin	US	Robert Cuzner	College of Engineering and Applied Science	Electrical Engineering and Computer Science	Center for Sustainable Electrical Energy Systems
University of Wisconsin - Platteville	Wisconsin	US	Gholamreza Dehnavi	College of Engineering, Mathematics and Science	Electrical Engineering	
University of Wyoming	Wyoming	US	John Pierre	College of Engineering and Applied Sciences	Electrical and Computer Engineering	
Valparaiso University	Indiana	US	Doug Tougaw	College of Engineering	Electrical and Computer	
Virginia Polytechnic Institute and State University	Virginia	US	Virgilio Centeno	College of Engineering	Electrical and Computer Engineering	VT Advanced Research Institute, Future Energy Electronics Center, Center for Power Electronics. Center for Power and Energy
Washington State University	Washington	US	Jody Opheim	Voiland College of Engineering and Architecture	School of Electrical Engineering and Computer Science	Energy Systems Innovation Center, Power Systems Engineering Research Center
Wayne State University	Michigan	US	Caisheng Wang	College of Engineering	Electrical and Computer Engineering	
West Virginia University	West Virginia	US	Muhammad Choudhry	Statler College of Engineering and Mineral Resources	Lane Computer Science and Electrical Engineering	Advanced Power and Electricity Research Center
West Virginia University Institute of Technology	West Virginia	US	Kenan Hatipoglu	Leonard C. Nelson College of Engineering and Sciences	Electrical and Computer Engineering	
Western Carolina University	North Carolina	US	Hayrettin Karayaka	College of Engineering and Technology	School of Engineering and Technology	
Wichita State University	Kansas	US	Ward Jewell	College of Engineering	Electrical Engineering and Computer Science	Center for Energy Studies, Power Systems Engineering Research Center
Worcester Polytechnic Institute	Massachusetts	US	John Orr	Worcester Polytechnic Institute	Electrical and Computer Engineering	<u> </u>

Appendix Table 2. Faculty and Staff Engaged in Power Engineering Instruction in 2015-2016

Abbreviations used in Appendix Table 2

Rank

- Full Professor and Sponsored Power Chair P: ACP: Associate Professor ATP: Assistant Professor Adjunct Professor ADJ: EP: Emeritus Professor L/I: Lecturer/Instructor **Faculty Member's Department** Biosystems and Agricultural Engineering AG: AEO: Aerospace Bio Engineering; Biomedical Engineering BIO: CHE: Chemical Engineering CHP: Chemistry and Physics Civil Engineering; Civil and Environmental Engineering CIV: CS: Computer Science; Infomatics, Computing, and Cyber Systems ECE: Electrical and Computer Engineering ECN: Economics; Applied Economics EE: Electrical Engineering Electrical and Electronic Engineering EEE: EECS: Electrical Engineering and Computer Science; Computer Science and Electrical Engineering
- ENG: Engineering
- Environmental Engineering; Biological Engineering ENV:
- EPD: Engineering Professional Development; Continuing Professional Education

	u n	u u	ş	-dr		e	Ex (perien [Years]	ice)
Last Name	Rank or Positi	Department	Highest Degree	PES Members	IEEE Fellow	Full/Part Tim	Academic	Power Industry	Other Industry
	Aı	rizona State	Univer	rsity					
Ayyanar	ACP	ECE,ERG	PhD	Y	Ν				
Gorur	Р	ECE,ERG	PhD	Y	Y				
Hedman	ATP	ECE,ERG	PhD	Y	Ν				
Heydt	Р	ECE,ERG	PhD	Y	Y	F	42	3	0
Holbert	ACP	ECE,ERG	PhD	Y	Ν				
Karady	Р	ECE,ERG	PhD	Y	Y				
Lei	ATP	ECE,ERG	PhD	Y	Ν	F	1	4	0
Qin	ATP	ECE,ERG	PhD	Y	Ν	F	1	4	0
Sankar	ATP	ECE,ERG	PhD	Ν	Ν				
Tylavsky	ACP	ECE,ERG	PhD	Y	Ν	F			
Undrill	Р	ECE,ERG	PhD	Y	Y				
Vittal	Р	ECE,ERG	PhD	Y	Y				
Zhang	Р	ECE,ERG	PhD	Ν	Y				
		Auburn Un	iversit	y					
Gross	EP	ECE	PhD	Y	Y				
Halpin	Р	ECE	PhD	Y	Y				
Nelms	Р	ECE	PhD	Y	Y				
		Baylor Un	iversity	v					
Chiasson	ACP	ECE	PhD	Ν	Y	F	28	3	4
Grady	Р	ECE	PhD	Y	Y				
Lee	Р	ECE	PhD	Y	Y				
	E	Boise State U	Jnivers	sity					
Ahmed-Zaid	ACP	ECE	PhD	Ý	Ν	F	29	4	0
Chiasson	ACP	ECE	PhD	Ν	Y	F	28	3	4
Stubban	ADJ	ECE	PhD	Y	Ν	Р	2	8	16
E	Buffalo State	e - State Uni	iversity	of N	New Y	York		,	
Fiume	L/I	ET	М	Ν	Ν	Р	3	35	3
Grinberg	Р	ET	PhD	Y	Ν	F	21	20	0
Zahm	L/I	ET	М	Ν	Ν	Р	1	38	0
Califor	nia Polytec	hnic State U	Inivers	ity, S	an L	uis Ot	oispo		<u> </u>
Ahlgren	ACP	EE	PhD	Y	Ν	F	17	15	0
Dolan	ACP	EE	PhD	Y	Ν	F	12	2	0
MacCarley	Р	EE	PhD	Ν	Ν	F	25	10	0
							-		

Engineering Public Policy EPP:

ERG: Energy; Energy Resources; Electric Energy; Energy

- Engineering
- ET: Engineering Technology; Technology
- Industrial Engineering; Industrial and Manufacturing IE: Systems Engineering; Integrated Systems Engineering Mechanical Engineering ME:
- MG: Engineering Management; Management
- MNG: Mining Engineering
- MTH: Math; Applied Math and Statistics; Scientific Computation
- MTL: Materials Engineering; Material Science and Engineering
- NUC: Nuclear Engineering
- PHL: Philosophy
- Systems Engineering SYS:
- TD: Transmission and Distribution
- **Highest Degree** B - Bachelors
 - O-Other

N-No

- D PhD
- \overline{M} Master's M
- IEEE Membership

Y – Yes

IEEE Fellow

- Y Yes N - No
- Full-Time or Part-Time

P-Part-Time F-Full-Time

	ion		ee	hip	v	эс	Ex (perier Years	ice)
Last Name	Rank or Positi	Department	Highest Degr	PES Members	IEEE Fellov	Full/Part Tim	Academic	Power Industry	Other Industry
Poshtan	L/I	EE	PhD	Y	Ν	F	15	2	0
Shaban	Р	EE	PhD	Y	Ν	F	34	5	0
Taufik	Р	EE	PhD	Y	Ν	F	17	3	0
(Califor	nia State Un	iversit	y, Fr	esno				
Bengiamin	Р	ECE	PhD	Ν	Ν	F	36	1	0
Na	ATP	ECE	PhD	Y	Ν	F	2	2	0
Ca	lifornia	a State Univ	ersity,	Nort	hridg	je			
Osorno	Р	ECE	PhD	Y	Ν				
Sedghisigarchi	ATP	ECE	PhD	Y	Ν				
Ca	lifornia	State Unive	ersity,	Sacra	ımen	to			
Belkhouche	ACP	EEE	PhD	Ν	Ν	F	11	0	0
Mearns	L/I	EEE	В	Ν	Ν	Р	3	38	1
Mensah-Bonsu	L/I	EEE	PhD	Y	Ν	Р	7	17	0
Rahimi Ardabily	L/I	EEE	М	Ν	Ν	Р	2	2	1
Saghaimaroof	L/I	EEE	М	Ν	Ν	Р	8	20	10
Tatro	L/I	EEE	М	Y	Ν	Р	16	0	24
Toups	ATP	EEE	PhD	Y	Ν	F	1	1	0
Vaziri	ATP	EEE	PhD	Y	Ν	F	24	26	0
Yazdani	ATP	EEE	PhD	Y	Ν	F	2	13	0
Zarghami	ATP	EEE	PhD	Y	Ν	F	5	13	0
	Car	negie Mello	n Univ	ersit	у				
Ilic, J.	ACP	ECE	PhD	Y	Ν	F	10	2	2
Ilic, M.	Р	ECE, EPP	PhD	Y	Y	F	40	0	0
Kar	ATP	ECE	PhD	Y	Ν	F	5	0	0
Kolter	ATP	CS	PhD	Ν	Ν	F	3	0	0
Rowe	ACP	ECE	PhD	Y	Ν	F	10	0	0
Sinopoli	ACP	ECE	PhD	Y	Ν	F	10	0	0
	Case V	Vestern Rese	erve U	niver	sity				
Hong	ACP	EECS	PhD	Y	Ν				
Loparo	Р	EECS	PhD	Y	Y				
Prica	ATP	EECS	PhD	Y	Ν				

	_			_			Ex	perier	nce
Last Name	Rank or Position	Department	Highest Degree	PES Membershil	IEEE Fellow	Full/Part Time	Academic	Power Industry	Other
* ·	4.77D	Clarkson U	niversi	ty	N	1	1	1	
L1 McGrath	ATP	ECE	PhD	Y	N N				
Ortmeyer	P	ECE	PhD	Y	Y				
Wu	ATP	ECE	PhD	Y	Ν				
G	D	Clemson U	niversi	ty	N	1	1	1	
Corzine Makram	P	ECE	PhD PhD	Y	N Y				
Singh	P	ECE	PhD	N	Y				
Venayagamoorthy	Р	ECE	PhD	Y	Ν				
	Cle	veland Stat	e Univ	ersity	/	1	1	1	
Alexander Morinec	ADI	ECE	PhD PhD	Y	Y N	Р	2	33	0
Stankovic	P	ECE	PhD	Y	N	-	-	55	0
Villaseca	Р	ECE	PhD	Y	Ν				
Ye	ATP	EECS	PhD	Y	Ν	F	8	0	0
Ammerman		EFCS	PhD	/ines	N	<u> </u>			
Arkadan	P	EECS	PhD	Y	N	F	20	0	0
Mohagheghi	ATP	EECS	PhD	Y	Ν				
Sen	Р	EECS	PhD	Y	Y				
Simoes	ACP	EECS	PhD	Y	N		ļ	ļ	ļ
Collins	P	ECE	PhD	n sity	Y	<u> </u>	· · · ·	· · · ·	
Suryanarayanan	ACP	ECE	PhD	Y	Ν				
Yang	Р	ECE	PhD	Ν	Ν				
Young Zimmarla	P	ECE	PhD	N	N	D	0	2	25
Zinninerie	ADJ	Concordia I	Inivers	itv	IN	r	0		23
Lopes	ACP	ECE	PhD	N	Ν	F	20	0	0
Pillay	Р	ECE	PhD	Y	Y	F	28	1	0
Rathore	ACP	ECE	PhD	Ν	Ν	F	7	0	0
Anderson	ATP	ENV	PhD	y Y	Ν	<u> </u>			
Bitar	ATP	ECE	PhD	Y	N	F	5	0	0
Chiang	Р	ECE	PhD	Y	Y				
Cowen	P	CIV,ENV	PhD	N	N	F	19	0	3
Mount Schuler	EP EP	ECN,MG ECN	PhD	Y	N N				
Schulze	P	ECN,MG	PhD	N	N				
Thomas	EP	ECE	PhD	Y	Y	F	40	0	0
Tong	Р	ECE	PhD	Y	Y				
Zhang	ACP	ME,AEO	PhD	Y	Ν				
Ferrese	ADJ	ECE	PhD	y N	Ν	Р	0	12	10
Fischl	EP	ECE	PhD	Y	Y	Р	50	0	0
Halpin	ADJ	ECE	PhD	Y	Ν	Р	0	0	36
Liddy	ADJ	ECE	B	Y	N	P	0	23	0
Miu Niebur	P ACP	ECE	PhD PhD	Y	N N	F	18	0	0 4
Nwankpa	P	ECE	PhD	Y	Y	F	24	2	0
Scoles	ACP	ECE	PhD	Y	Ν	F	34	0	0
F	AMU-	FSU Colleg	e of E	ngine	ering	n	1.		
Argandeh	ATP	ECE	PhD	Y	N	F	4	2	0
Faruque	ATP	ECE	PhD	Y	N	F	7	0	3
Li	Р	ECE	PhD	Y	N	F	14	0	0
Ordonez	Р	ME	PhD	Ν	Ν	F	12	0	0
Pamidi	ACP	ECE	PhD	N	N	F	20	0	0
Steurer	Florid	ECE	PhD nal Un	ivere	N itv	F	20	0	0
Berzoy	L/I	ECE	M	Y	N	Р	10	5	5
Dube	ADJ	ECE	М	Ν	Ν				
Farah	ADJ	ECE	M	Y	N				
Mohammed Sarwat		ECE	PhD PhD	Y	Y	F	38	5	5
Youssef	L/I	ECE	M	Y	N	P	10	5	9
		Gannon U	niversit	y	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Mak	Р	ECE	PhD	Ν	Ν				
Zhao	ACP	ECE	PhD of Tast	N	N				
Divan	P	ECE	PhD	Y	Y	F	26	10	0
Graber	ATP	ECE	PhD	Ŷ	N	F	20	5	0
Grijalva	ACP	ECE	PhD	Y	Ν				
Habetler	P	ECE	PhD	Ν	Y		<u> </u>	<u> </u>	<u> </u>
Harley	Р	ECE	PhD	Y	Y				

	ı			d			Ex	perien	ice
e	itio	Ħ	ree	shi)	M	ime	(Y ears)
Yam	Posi	me	Deg	nber	ello	t Ti	. <u>.</u>	v	A
st N	or	part	est	Ien	ΈF	Par	emi	ver	ner istry
La	ank	Del	ligh	N S	IEE	/In	cad	Pov	Oth ndu
	R		H	ΡE		F	Y	I	I
Malionaulaa	D	ECE	DLD	v	v				
Rincon-Mora	P P	ECE	PhD	I N	Y				
Rohatgi	P	ECE	PhD	Y	Ŷ				
Saeedifard	ATP	ECE	PhD	Y	Ν				
		Gonzaga U	niversi	ty					
Flerchinger	ADJ	TD	M	Y	N				
Gers	ADJ	TD	PhD	Y	N V				
McKinstry	ADJ	TD	M	I N	I N				
McKenny	P	MG	PhD	Y	N				
Miller	ADJ	TD	М	Y	Ν				
Pacini	ADJ	TD	М	Y	Ν				
Proteau	ADJ	TD	Μ	Ν	Ν				
Santora	L/I	ECE	PhD	Y	N	F	5	0	5
Schennum	P	ECE	PhD	Y	N	F	30	0	5
Smith	ADI	TD	M	I N	I N				
Yenumula	ADJ	TD	PhD	N	N				
		Howard Un	niversit	y			·		
Bofah	Р	EE	PhD	Y	Y	F	35	8	0
Kim	P -	EE	PhD	Y	N	F	25	5	0
Momoh	P	ECE	PhD	Y	Y	F	33	33	0
Rubaai	P	EE is Instituto (PhD of Tool	Y	Y	F	25	5	0
Bahramirad	ADI	FCE	PhD	Y	gy N	Р	0	10	0
Bekiarov	ADJ	ECE	PhD	Ŷ	N	-	Ŭ	10	0
Bettler	ADJ	ECE	PhD	Y	Ν				
Brown	ATP	ECE	PhD	Y	Ν				
Desai	ADJ	ECE	PhD	Y	Ν				
Flueck	ACP	ECE	PhD	Y	N			-	0
Ganji Kalaba amumbu	ADJ	ECE	PhD	Y	N	Р	0	5	0
Krisnnamurtny	ACP P	ECE	PhD	r V	IN N				
Shahidehnour	P	ECE	PhD	Y	Y				
Shanechi	ĹЛ	ECE	PhD	v	N				
onuncem			1 1112	1	1.4				
Shen	P	ECE	PhD	Y	Y				
Shen Zhong	P P	ECE	PhD PhD	Y Y	Y N	F	20	0	0
Shaheeni Shen Zhong Indiana U	P P Jnivers	ECE ECE ity - Purdue	PhD PhD Unive	Y Y rsity	Y N India	F	20 lis	0	0
Shen Zhong Indiana U Dos Santos	P P Jnivers ATP	ECE ECE ity - Purdue ECE	PhD PhD Unive PhD PhD	Y Y ersity N	Y N India N	F inapol F	20 lis 9	0	0
Shen Zhong Indiana U Dos Santos Rovnyak	P P Jnivers ATP ACP	ECE ECE ity - Purdue ECE ECE owa State I	PhD PhD Unive PhD PhD PhD	Y Y ersity N Y	Y N India N N	F anapol F	20 lis 9	0	0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu	P P Jnivers ATP ACP I P	ECE ECE ity - Purdue ECE ECE owa State U ECE	PhD PhD Unive PhD PhD Inivers PhD	Y Y rsity N Y ity Y	Y N India N N Y	F anapol F F	20 lis 9 31	0	0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson	P P Jnivers ATP ACP I P P	ECE ECE ECE ECE ECE Owa State U ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y ersity N Y ity Y	Y N India N N Y Y	F anapol F F F	20 lis 9 31 22	0	0 0 0 5
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu	P P Jnivers ATP ACP I P P P	ECE ECE ity - Purdue ECE ECE owa State U ECE ECE ECE	PhD PhD Unive PhD PhD PhD PhD PhD PhD PhD	Y Y rsity N Y ity Y Y Y	Y N Indiz N N Y Y Y	F F F F F	20 lis 9 31 22 17	0	0 0 0 5 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan	P P Jnivers ATP ACP I P P P ADJ	ECE ECE ity - Purdue ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y rsity N Y ity Y Y Y	Y N Indiz N N Y Y Y N	F F F F F F	20 lis 9 31 22 17 4	0 0 0 0 0 0 0	0 0 5 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley	P P Jniverss ATP ACP I P P ADJ P	ECE ECE ity - Purdue ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y rrsity Y ity Y Y Y Y Y	Y India N Y Y Y Y Y Y	F F F F F F F	20 lis 9 31 22 17 4 24	0 0 0 0 0 0 5	0 0 5 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion	P P Jnivers ATP ACP P P P ADJ P P	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y rsity Y ity Y Y Y Y Y Y Y	Y India N Y Y Y N Y N	F F F F F F F F	20 lis 9 31 22 17 4 24 35	0 0 0 0 0 0 5 0	0 0 5 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang	P P Jnivers ATP ACP P P ADJ P ADJ P P ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y rrsity N Y Y Y Y Y Y Y Y N	Y N Indiz N N Y Y Y Y N Y N N	F F F F F F F F F F	20 lis 9 31 22 17 4 24 35 8	0 0 0 0 0 0 5 0 0 0	0 0 5 0 0 0 0 0 0
Shen Zhong Indiana U Zhong Indiana U Dos Santos Rovnyak Aijarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang	P P Jnivers ATP ACP P P ADJ P P ADJ P ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N Indiz N N Y Y Y Y N N N N	F F F F F F F F F F	20 lis 9 31 22 17 4 24 35 8 1	0 0 0 0 0 0 5 0 0 0 0	0 0 5 0 0 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak A Ajijarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya	P P Jnivers ATP ACP P P P ADJ P ADJ P ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Trsity N Y Y Y Y Y Y Y Y Y Y N N	Y N Indiz N N Y Y Y Y Y N N N N N N	F F F F F F F F F F F F	20 lis 9 31 22 17 4 24 35 8 1 10	0 0 0 0 0 5 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 2
Shen Zhong Indiana U Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University	P P Jnivers ATP ACP P P ADJ P P ADJ P P ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y rrsity Y Y Y Y Y Y Y Y N N Y N	Y Y N Indiž N N Y Y Y Y N N N N N N	F F F F F F F F F F F F F	20 lis 9 31 22 17 4 24 35 8 1 10	0 0 0 0 0 5 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 2
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kaanas Stata University	P P Jnivers ATP ACP P P ADJ P P ADJ P P ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N Indiz N N Y Y Y Y Y N N N N N N	F F F F F F F F F F	20 lis 9 31 22 17 4 24 35 8 1 10	0 0 0 0 0 5 0 0 0 0 0	0 0 5 0 0 0 0 0 0 2
Shen Zhong Indiana U Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douelas-Miller	P P P Inivers ATP ACP P P ADJ P P ADJ P P ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD Unives PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N India N N Y Y Y Y Y N N N N N N N	F anapol F F F F F F F F F F F F	20 fis 9 9 17 4 22 17 4 35 8 1 10 26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller	P P P Inivers ATP ACP P P ADJ P P ADJ P P ACP ATP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD Univers PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y Y N Indiz N Y Y Y Y Y Y N N N N N N N	F F F F F F F F F F F F F F	20 fis 9 31 22 17 4 24 35 8 1 10 26 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4	0 0 5 0 0 0 0 0 0 0 2 2
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Wang Wang Uaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos	P P P ACP ACP P P ADJ P P ADJ P P ADJ P P ACP ACP ACP ACP ACP ACP P P	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD Univers PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y rrsity Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N Indiä N N Y Y Y Y Y N N N N N N N N N N N	F F F F F F F F F F F F F F F F	20 viis 9 31 22 17 4 24 35 8 1 10 26 8 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 2 2 0 0 0 15
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa	P P P Jnivers ATP ACP P P P ADJ P P ADJ P P ADJ P P ADJ P P ADJ P P ADJ P P ADJ P P P ADJ P P P ADP P P P P P P P P P P P P P P P	ECE	PhD PhD Univers PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Yrsity Y	Y N Indiä N N Y Y Y Y N N N N N N N N N N N Y	F F F F F F F F F F F F F F F F F F F	20 iiis 9 31 22 17 4 24 35 8 1 10 26 8 30 32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 2 2 0 0 0 15 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett	P P P ATP ACP P P P P ADJ P P ADJ P P ACP ACP ACP ACP P P ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N N N N N N N N N N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 31 22 17 4 24 35 8 1 10 26 8 30 32 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 2 2 0 0 0 15 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University	P P P ATP ACP P P P P P ADJ P P ADJ P P ACP ACP ACP P P ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECC	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N Indiž N N Y Y Y Y N Y Y N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 31 22 17 4 24 35 8 1 10 26 8 30 32 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Statrett Kennesaw State University Diong Lako Sungerior State University Diong Lako Sungerior State University Diong Lako Sungerior State University Diong State University Diong State University Diong State University Diong Lako Sungerior State University Diong State University State University Diong State University	P P P ACP P P P P P P P ACP ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECC ECC ECC ECC ECC ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y	Y N India N N Y Y Y Y N Y Y N N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 20 31 22 17 4 24 35 8 1 10 26 8 30 32 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shen Zhong Indiana U Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Song Kansas State University Douglas-Miller Mirafzal Moreos Pahwa Starett Kennesaw State University Diong Lake Superior State University Diong	P P Jnivers ATP ACP P P ADJ P P ADJ P P ADJ P P ACP ACP ACP ACP ACP ACP ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD Univers PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y	Y N India N N Y Y Y N Y Y N N N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 jis 9 31 22 17 4 24 35 8 1 10 26 8 30 20 20 43	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Diong Lake Superior State University Diong Lake Superior State University McDonald Lamar University	P P Jnivers ATP ACP P P ADJ P P ADJ P P ADJ P P ACP ACP ACP ACP P P ACP ACP C ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD Univers PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y N N	Y N India N Y Y Y Y Y Y Y Y N Y Y N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 iis 9 31 22 17 4 24 35 8 1 10 26 8 30 32 20 43	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Diong Lake Superior State University Barzegaran	P P Jnivers ATP ACP P P P ADJ P P ADJ P P ACP ATP ACP ATP ACP ACP ACP ACP ACP ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y	Y N India N Y Y Y Y Y Y Y Y Y Y Y N Y Y N N N N N	F F F F F F F F F F F F F F F F F F F	20 fils 9 31 22 17 4 24 35 8 1 10 26 8 30 32 20 43 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 2 3 3
Indiana U Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kanasa State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Barzegaran Baumann	P P Jnivers ATP ACP P P ADJ P P ADJ P P ADJ P P ACP ATP ACP ATP ACP ACP ACP ACP ACP ACP ACP ACP ACP AC	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y N Y N Y N Y N Y N Y N Y N Y Y N Y	Y N Indiä N N Y Y Y N N N N N N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 fils 9 31 22 17 4 24 35 8 1 10 26 8 30 32 20 43 2 24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 2 3 3
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Barzegaran Baumann Moening	P P P Jnivers ATP ACP P P P ADJ P P ADJ P P ACP ACP ACP ACP ACP ACP ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N Indiä N N Y Y Y N Y Y Y N N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 iis 9 31 22 17 4 24 35 8 1 10 26 8 30 20 43 2 24 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Diong Lake Superior State University Diong Lake Superior State University Barzegaran Baumann Moening Weber	P P P ACP ACP P P P ADJ P P ADJ P P ACP ACP ACP ACP ACP ACP ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Sity Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N INII N Y Y N Y N N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 ilis 9 31 22 17 4 24 35 8 1 10 26 8 30 20 20 43 2 24 6 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Starrett Kennesaw State University Diong Lake Superior State University Barzegaran Baumann Mocening Weber Lawrence Technological U	P P P ACP ACP P P P ADJ P P ADJ P P ACP ACP ACP ACP ACP ACP ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N Indix Y	F F F F F F F F F F F F F F F F F F F	20 fils 9 31 22 17 4 24 35 8 1 10 26 8 30 32 20 43 22 43 6 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 2 2 0 0 0 0 15 0 0 0 15 0 0 0 15 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Wang Vaidya John Brown University Song Kansas State University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Diong Lake Superior State University Barzegaran Baumann Moening Weber Lawrence Technological U	P P P ATP ACP P P P ADJ P P ADJ P P ACP ACP ACP ACP ACP ACP ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N Indiž N N N Y Y Y N N N N N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 fils 9 31 22 17 4 24 35 8 1 10 26 8 30 32 20 43 24 6 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Diong Lake Superior State University Diong Lake Superior State University Barzegaran Baumann Moening Weber Lawrence Technological U Johnston Louisiana State University	P P P ATP ACP P P P P ADJ P P ACP ATP ACP ATP ACP ACP ACP ACP P P ACP P P P ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y N Indiž N N Y Y Y N Y Y Y N N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	20 itis 9 31 22 17 4 24 35 8 1 10 26 8 30 32 20 43 2 24 6 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Diong Lake Superior State University Diong Lake Superior State University Diong Lake Superior State University Barzegaran Baumann Moening Weber Lawrence Technological U Johnston Louisiana State University Czarnecki Farasat	P P P Jnivers ATP ACP P P P ADJ P P ACP ATP ACP ACP ACP ACP ACP ACP P P P ACP P ACP P ACP P ACP P ACP P ACP AC	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y Z DIN X Y Y Y X Y X X X X X X X X X X X X X	F F F F F F F F F F F F F F F F F F F	20 ilis 9 31 22 17 4 24 35 8 1 10 26 8 30 32 20 43 2 24 6 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitam McCalley Tesfatsion Wang Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Barzegaran Baumann Moening Weber Lawrence Technological U Johnston Louisiana State University Distarett Karnes State University Barzegaran Baumann Moening Weber Lawrence Technological U Johnston Louisiana State University	P P P Jniverss ATP ACP P P P ADJ P P ADJ P P ACP ACP ACP ACP ACP ACP ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y X Y <td>F F F F F F F F F F F F F F F F F F F</td> <td>20 iis 9 31 22 17 4 24 35 8 1 10 26 8 30 20 43 2 24 6 10 2 24 6 10 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0</td>	F F F F F F F F F F F F F F F F F F F	20 iis 9 31 22 17 4 24 35 8 1 10 26 8 30 20 43 2 24 6 10 2 24 6 10 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0
Shen Zhong Indiana U Dos Santos Rovnyak Ajjarapu Dobson Govindarasu Khaitan McCalley Tesfatsion Wang Wang Vaidya John Brown University Song Kansas State University Douglas-Miller Mirafzal Morcos Pahwa Starrett Kennesaw State University Diong Lake Superior State University Barzegaran Baumann Moconing Weber Lawrence Technological U Johnston Louisiana State University Farasat Kargarian Mocanely	P P P Jnivers ATP ACP P P P P ADJ P P ADJ P P ACP ACP ACP ACP ACP ACP ACP ACP ACP	ECE ECE ECE ECE ECE ECE ECE ECE ECE ECE	PhD PhD PhD PhD PhD PhD PhD PhD PhD PhD	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	X Y X Y <td>F F F F F F F F F F F F F F F F F F F</td> <td>20 iis 9 31 22 17 4 24 35 8 10 26 8 30 20 20 43 20 43 20 21 22 24 6 10 22 24 22 22 22 22 23 22 23 22 23 22 23 23</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 5 0 0 0 0 0 0 0 0 2 2 0 0 0 0 2 3 3 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	F F F F F F F F F F F F F F F F F F F	20 iis 9 31 22 17 4 24 35 8 10 26 8 30 20 20 43 20 43 20 21 22 24 6 10 22 24 22 22 22 22 23 22 23 22 23 22 23 23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 2 2 0 0 0 0 2 3 3 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	_			a			Ex	perien	ice
----------------------------	------------------	-------------------	----------------	---	-------------	----------------	-----------	-------------------	-------
Last Name	Rank or Position	Department	Highest Degree	PES Membershi	IEEE Fellow	Full/Part Time	Academic	Power Industry	Other
Marquette University									
Demerdash	Р	ECE	PhD	Y	Y				
lonel Woise	ADJ	ECE	PhD	Y	Y				
Yaz	P	ECE	PhD	Y	N				
Massachusetts Institute of	Techno	ology	1.112	-					
Kirtley	Р	EECS	PhD	Y	Y	F	40	5	0
Lang	Р	EECS	PhD	Ν	Y	F	35	0	0
Leeb	P	EECS	PhD	Y	Y	F	20	3	3
Perreault	Р	EECS McGill Un	PhD	Y	Y	F	18	1	0
Bouffard	ACP	ECE	PhD	y Y	Ν	F	10	0	1
Joos	P	ECE	PhD	Ŷ	Y	F	38	3	0
Kamwa	ADJ	ECE	PhD	Y	Y	Р	0	25	0
Wang	ATP	ECE	PhD	Y	Ν	F	1	0	0
Me	emorial	University	of Nev	vfou	ıdlan	d			1
Iqbal	P	EE	PhD	N	N	F	25	5	5
Jeyasurya Liang	ATP	EE FF	PhD	Y N	IN N	F	32	2	12
Ouaicoe	P	EE	PhD	N	N	F	36	0	12
Rahman	Р	EE	PhD	Y	Y	F	50	5	5
		Miami Un	iversity	/					
Scott	ATP	ECE	PhD	Y	Ν	F	1	2	0
Ucci	P	ECE	PhD	N	N				
Mitro	M	ECE	DhD	ersity V	N	Б	16	0	5
Peng	P	ECE	PhD	I N	N V	F	18	0	8
Strangas	P	ECE	PhD	Y	N	F	33	1	5
Wang	ATP	ECE	PhD	Y	Ν	F	8	2	4
Ν	Aichiga	n Technolo	gical U	Jnive	rsity				
Bohmann	Р	ECE	PhD	Y	Ν	P	27	2	0
Gauchia	ATP	ECE	PhD	Y	N	F	7	0	0
Hassell	L/I ACP	ECE	M	Y	N	P	32	0	5
Mork	P	ECE	PhD	Y	N	F	24	5	0
Paudyal	ATP	ECE	PhD	Y	N	F	4	0	0
Pearce	ACP	MTL	PhD	Ν	Ν	Р	12	0	0
Ten	ACP	ECE	PhD	Y	Ν	F	7	0	5
Weaver	ACP	ECE	PhD	Y	Ν	F	9	5	0
M	inneso	ta State Uni	DED	, Ma	nkato	E	10	0	0
Winstead Zeng	ACP	ECE,ET	PhD	Y N	IN N	F	10	1	0
Zeng	Mis	sissippi Stat	e Univ	versit	v				0
Fu	ACP	ECE	PhD	Y	Ν	F	10	0	0
Karimi-Ghartemani	ACP	ECE	PhD	Y	Ν				
Kluss	ATP	ECE	PhD	Y	Ν	F	5	0	0
Mazzola	P	ECE	PhD	Y	N				
Misson	P ri Unit	ECE	ionaa	I I I I I I I I I I I I I I I I I I I	IN loohn	ology			I
Crow	P	ECE	PhD	Y	Y	ology			
Ferdowsi	ACP	ECE	PhD	Y	Ν				
Kimball	ACP	ECE	PhD	Y	Ν				
Shamsi	ATP	ECE	PhD	Y	Ν				
N	1ontana	a State Univ	ersity,	Boze	eman				
Nehrir	P	ECE	PhD	Y	Y	F	40	1	0
N	Jew Je	rsev Institut	e of Te	chno	logy	<u> </u>	40		0
Ansari	Р	ECE	PhD	Ν	Y	F	28	0	0
David	ADJ	ECE	PhD	Y	Ν				
Grebel	Р	ECE	PhD	Y	Ν				
Hubbi Khasishah	ACP	ECE	PhD	Y	N				
Knreisnan	ATP	ECE	PhD	Y V	IN N	Б	2	0	0
Levkov	I/I	FCF	PhD	N	N	r	2	0	0
Nguyen	ATP	ECE	PhD	Y	N	F	2	0	0
Rojas-Cessa	ACP	ECE	PhD	Y	Ν				
Zhou	Р	ECE	PhD	Y	Y				
D 1	New	Mexico Sta	te Uni	versi	ty N	F	<u>a:</u>		6
Brahma	ACP	ECE	PhD	Y	N	F	24	2	0
riarrei Prasad	ADJ ACP	ECE	PhD	N	N	F	9 30	5 18	8
Ranade	P	FCF	PhD	Y	N	F	34	2	0
New York U	Jnivers	sity Polytech	nnic Sc	chool	of E	ngine	ering		
Czarkowski	ACP	ECE	PhD	Y	Ν	F	20	0	1
De Leon	ACP	ECE	PhD	Y	Y	F	22	6	0
Campisi	L/I	ECE	Μ	Ν	Ν	F	10	0	5

				-			Ex	perier	ice
Last Name	Rank or Position	Department	Highest Degree	PES Membership	IEEE Fellow	Full/Part Time	Academic	Power Industry	Other Industry
Dvorkin	ATP	ECE	PhD	Y	N	F	5	2	1
Zabar	P	ECE	PhD	Y	N	F	43	0	0
Nort	h Caro	lina State U	niversi	ity at	Rale	igh			
Baran	P	ECE	PhD	Y	Y	F	25	2	0
Bhattacharya Chakrabortty	ATP	ECE	PhD	Y	Y N	F	15	0	0
Hopkins	Р	ECE	PhD	Y	Y	F	30	0	0
Huang	Р	ECE	PhD	Y	Y	F	20	0	0
Husain	P	ECE	PhD	Y	Y	F	20	0	0
Lu Lubkeman	P	ECE	PhD PhD	Y	N Y	F	22	7	0
Lukic	ACP	ECE	PhD	Y	N	F	10	0	0
	North	1 Dakota Sta	ate Uni	versi	ty				
Chaudhuri	ATP	ECE	PhD	Y	N	F	2	5	0
Kavasseri Northeastern University	ACP	EE	PhD	Y	N	F	14	1	0
Abur	Р	ECE	PhD	Y	Y	F	31	0	0
Amirabadi	ATP	ECE	PhD	Y	Ν	F	3	0	0
Lehman	Р	ECE	PhD	Y	Ν	F	24	1	0
Vonomoon	Nort	hern Arizor	na Univ	/ersit	y N	Б	1	0	0
r aramasu	Oh	io Northern	Unive	rsity	IN	г		0	0
Al-Olimat	P	ECE	PhD	Y	Ν				
Vemuru	Р	ECE	PhD	Y	Ν				
	(Dhio State U	Inivers	ity		-			
Conejo Illindala	P	IE ECE	PhD	Y	Y	F	26	0	0
Kasten	EP	ECE	PhD	Y	N	P	40	4	0
Luo	L/I	ECE	PhD	Ν	Ν	F	6	1	0
Sebo	EP	ECE	PhD	Y	Y	Р	55	4	0
Wang	ACP	ECE	PhD	Y	N	F	9	0	2
wang Xu	P	ECE	PhD	Y	N Y	F	28	8	0
Au	Okl	ahoma Stat	e Univ	ersity	,		20	0	
Ekneligoda	ATP	ECE	PhD	Y	Ν	F	4	1	0
Ramakumar	P	ECE	PhD	Y	Y	Б	2	0	0
Guo	Ol	1 Dominion	Unive	rsitv	IN	г	2	0	0
Isaac	ACP	ET	PhD	Y	Ν	F	15	17	0
Lakdawala	ACP	ECE	PhD	Ν	Ν	F	40	10	0
Moses	ATP	ET	PhD	Y	N	F	2	4	0
X1ao Zhang	ACP	ECE	PhD PhD	N Y	N N	F	20	5	0
	0	regon State	Univer	sity			0		0
Bobba	ATP	EECS	PhD	Y	Ν	F	10	0	0
Brekken	ACP	EECS	PhD	Y	N				
Cotilla-Sanchez Kim	ATP	EECS	PhD PhD	Y	N	F	5	0	0
Von Jouanne	P	EECS	PhD	Y	Y		5	0	0
Zhang	ATP	EECS	PhD	Y	Ν				
Peni	nsylvar	ia State Un	iversit	y, Ha	rrisbu	ırg		1	
ldowu Khazaei	P ATP	EE	PhD PhD	Y	N N	F	2	2	0
Tonningen	L/I	EE	PhD	N	N	F	30	0	2
	Po	rtland State	Unive	rsity					
Bass	ACP	ECE	PhD	Y	Ν	F	12	0	0
Bird	ACP	ECE	PhD ty Mar	Y	N	F	7	2	0
Apostoaia	ACP	ECE	PhD	Y	N	F	35	0	3
Kozel	Р	ECE	PhD	Y	N	F	27	0	0
Kramer	P	CHP	PhD	Ν	Ν	F	10	30	0
Xu	ATP	ECE	PhD	Y	N	F	2	0	0
Aliprantis	ACP	ECE	PhD	Lafay Y	N	F	10	0	1
Liu	ACP	IE	PhD	Ν	Ν	F	6	4	0
Ong	Р	ECE	PhD	Y	Y	F	45	1	0
Pekarek	P	ECE	PhD	Y	Y	F	20	0	0
Wasynczuk	P P	ECE	PhD	Y	Y	F	25 36	0	0
	Renss	elaer Polyte	chnic	Instit	ute	<u> </u>	55		
Chow	Р	ECE,SYS	PhD	Y	Y	F	30	9	0
Parsa	ACP	ECE,SYS	PhD	Y	N	F	12	0	0
Sun Wang	P	ECE,SYS	PhD	Y	Y	F	16	6	0
wally	AIP	LC3,315	rnD	ſ	IN	г	4	U	U

	u			ip			Ex	perien Vears	ice
Last Name	Rank or Positio	Department	Highest Degree	PES Membershi	IEEE Fellow	Full/Part Time	Academic	Power Industry	Other Industry
<i>a</i> .	D	Ryerson U	niversit	y	N	Б	27		0
Cheung	P	ECE	PhD	N	N	F	27	5	0
Venkatesh	P	ECE	PhD	Y	N	F	22	1	0
Wu	Р	ECE	PhD	Y	Y	F	30	1	0
Xu Vordoni	P	ECE	PhD	N	N	F	15	4	0
1 azuani	Sa	n Jose State	Unive	rsity	IN	г	10	/	0
Badawy	ATP	EE	PhD	Y	Ν	F	1	0	0
Hsu	Р	EE	PhD	Y	Ν				
Reischl	P	EE anta Clara I	PhD	Y	N				
Baratta	ADJ	EE	M	N	Ν	Р	15	0	40
Edris	ADJ	EE	PhD	Y	Y	Р	0	30	5
Ghadiri	ADJ	EE	Law	Ν	Ν	Р	3	0	6
Ghosh	ADJ	EE	PhD	Y	N	P	2	5	15
Khanbaghi	ATP	EE	PhD	Y	N	F	5	0	15
Krishnan	Р	EE	PhD	Y	Ν	F	15	0	5
McElfresh	ADJ	EE	PhD	Ν	Ν	Р	20	5	10
Mobed-Miremadi Mourad	L/I P	BIO	PhD	N	N	F	8	0	11
Vallor	P	PHL	PhD	N	N	F	15	0	0
-	-	Seattle Un	iversity	y		-		ů	
Louie	ATP	ECE	PhD	Y	Ν	F	8	3	1
South I	Dakota	School of M	Mines a	und T	echn	ology	1	2	0
Rausch	ADJ	ECE	B	Y	N	F	9	0	30
	South	1 Dakota Sta	ate Uni	versi	ty	-		ů	
Galipeau	EP	EECS	PhD	Ν	Ν	Р	25	5	0
Hansen	ATP	EECS	PhD	Y	N	F	1	1	0
Hietpas Tonkoski	P ATP	EECS	PhD PhD	Y	N N	F	4	1	0
Ni	ATP	EECS	PhD	Y	N	F	1	0	0
		Suffolk Un	iversit	y					
Christensen	ACP	ENG	PhD	Y	N	F	20	0	4
Snatz	Р	Svracuse U	niversi	r tv	IN	F	22	0	2
Bujanovic	ACP	EECS	PhD	N	Ν				
Eftekharnejad	ATP	EECS	PhD	Y	Ν	F	2	2	0
Ghosh	Р	EECS	PhD	N	Ν				
Biswas	Р	ECE	PhD	y Y	Ν	F	30	0	0
	Ter	inessee State	e Univ	ersity	,	-		ů	
Devgan	Р	ECE	PhD	Y	Ν				
Marpaka	ACP	ECE	PhD	N	Ν				
Balog	ACP	ECE	PhD	sity Y	Ν	F	7	0	6
Begovic	Р	ECE	PhD	Y	Y	F	30	0	0
Butler-Purry	Р	ECE	PhD	Y	Ν	F	22	0	2
Ehsani Enioti	P	ECE	PhD	Y	Y	F	36	0	4
Huang	P	ECE	PhD	Y	N				
Kezunovic	Р	ECE	PhD	Y	Y	F	30	15	0
Singh	Р	ECE	PhD	Y	Y				
Toliyat	P	ECE	PhD	Y	Y	F	25	3	1
AIC	T	exas Tech V	Univers	sitv	IN	1.	/	1	0
Bayne	Р	ECE	PhD	N	Ν	F	8	0	0
Dickens	Р	ECE	PhD	Ν	Ν	F	21	0	0
Giesselmann	P	ECE	PhD	Y	N	F	30	0	0
Neuber	P	ECE	PhD	I N	Y	F	20	0	0
reuber		Tufts Uni	versity	- 11	-	1	20		0
Stankovic	Р	ECE	PhD	Y	Y				
Barry	United	1 States Mil	itary A	cade:	my N	Б	1	0	7
St. Leger	ACP	EECS	PhD	Y	N	F	8	3	1
Spruce	L/I	EECS	М	Y	Ν	F	3	0	8
Ur	niversit	y of Alabar	na at B	irmir	ghar	n	-	-	
Franklin Heider	ACP	ECE	PhD	Y	N	F	9	9	0
Olson	ADJ	ECE	M	N	N	г Р	1	16	5
Shih-Min	ADJ	ECE	PhD	Y	Ν	Р	1	19	0
2	Unive	ersity of Ala	ska Fa	irban	ks				
Bogosyan	Р	ECE	PhD	Y	Ν				

	r	1	1		1		F	morior	100
	E		e	ф			153	Years)
Last Name	Rank or Positi	Department	Highest Degre	PES Membersh	IEEE Fellow	Full/Part Tim	Academic	Power Industry	Other Industry
Wies	ACP	ECE	PhD	Y	Ν	F	17	0	0
	Ī	University of	f Albe	rta					
Dinavahi	Р	ECE	PhD	Y	Ν				
Khajehoddin	ATP	ECE	PhD	Y	N	Б	1	2	0
Kish	P	ECE	PhD	Y	N	F	1	5	0
Liang	ATP	ECE	PhD	Y	N	F	3	0	0
Mohamed	ACP	ECE	PhD	Y	N	-	5	0	0
Pirooz Azad	ATP	ECE	PhD	Y	Ν	F	2	0	0
Salmon	Р	ECE	PhD	Y	Ν				
Xu	Р	ECE	PhD	Y	Y				
	U	niversity of	Arkan	sas	N	Б	20	0	0
Ang	P	EE	PhD	N	Y	F	28	8	0
Mantooth	P P	FF	PhD	I V	N V	F	18	8	0
McCann	P	EE	PhD	Y	N	F	10	0	15
Zhao	ATP	EE	PhD	Ν	Ν	F	2	1	0
	τ	Jniversity o	f Calga	ary					
Jazayeri	ATP	EE	М	Y	Ν				
Knight	Р	ECE	PhD	Y	N				
Nowicki	ACP	ECE	PhD	N	N	Б	5	1.4	0
Pahlevani	AIP	ECE	PhD	Y	N	F	5	14	0
Zareipour	ACP	ECE	PhD	Y	N				
Laiopou	Univer	sity of Calif	ornia.	Berk	elev				
Arias	ACP	EECS	PhD	Ν	N	F	5	2	8
Callaway	ACP	EI	PhD	Ν	Ν	F	10	3	0
Chang-Hasnain	Р	EECS	PhD	Ν	Y	F	24	0	5
Culler	P	EECS	PhD	N	Y	F	27	0	0
Javey	ACP	EECS	PhD	N	Y	F	20	0	0
Kabaey Salahuddin	ACP	FECS	PhD	N	I N	F	29	0	4
Sanders	P	EECS	PhD	Y	Y	F	27	0	0
Von Meier	ADJ	EECS	PhD	Ν	Ν	F	17	0	0
Yablonovitch	Р	EECS	PhD	Ν	Y	F	34	0	11
U	niversi	ty of Califo	rnia, Lo	os Ar	ngele	s	1	1	1
Gadh	P	ME, AEO	PhD	N	Ν	F	25	0	2
Datasah	Univ	ersity of C	entral F	lorid	la V	Б	25	0	0
Dimitrioveki	ACP	ECE	PhD	N V	Y N	F	25	12	0
Ou	P	ECE	PhD	Y	Y	F	26	0	0
Sun	ATP	ECE	PhD	Y	N	F	3	2	0
Vosoughi	ACP	ECE	PhD	Ν	Ν	F	10	0	0
Wu	Р	ECE	PhD	Y	Ν	F	17	0	0
Zhou	ATP	ECE	PhD	Y	Ν	F	2	2	0
6		University of	of Denv	/er	N	Б	1.5	0	0
Gao	ACP	ECE	PhD	Y	N	F	15	0	0
Zhang	ACF	ECE	PhD	N	N	F	7	0	0
-Sinting	U	University o	f Hous	ton	11	<u> </u>	,	0	0
Barati	L/I	ECE	PhD	Y	Ν				
Rajashekara	Р	ECE	PhD	Y	Y	F	50	0	0
Shireen	Р	ET	PhD	Y	Ν				
	L D	University	of Idah	0	N	Б	22	1	0
Hess	P	ECE	PhD	Y	N	F	23	1	0
Law	ACP	ECE	PhD	Y	N	P	24	2	0
Univ	ersity of	of Illinois at	Urban	a-Ch	ampa	aign	20	-	
Bose	ATP	ECE	PhD	Y	N	F	2	2	0
Dominguez-Garcia	ACP	ECE	PhD	Y	Ν	F	8	2	0
Gross	Р	ECE	PhD	Y	Y	F	23	20	0
Haran	ACP	ECE	PhD	Y	Y	F	3	14	0
Krein	P	ECE	PhD	Y	Y	F	29	4	0
Pai	r FP	ECE	PhD	1 V	r V	г Р	∠⊃ 51	5	0
Pilawa-Podgurski	ATP	ECE	PhD	Y	N	F	4	0	0
Sauer	Р	ECE	PhD	Y	Y	F	40	4	0
Zhu	ATP	ECE	PhD	Y	Ν	F	4	0	2

	-			d			Ex	perier	ice
Last Name	Rank or Position	Department	Highest Degree	PES Membershi	IEEE Fellow	Full/Part Time	Academic	Power Industry	Other Industry
	U	niversity of	Kentu	cky		1			
Cheng	Р	CHE MTL	PhD	Ν	Ν	F	8	0	20
Colliver	Р	AG	PhD	Ν	Ν	F	37	4	0
Cramer	ATP	ECE	PhD	Y	N	F	6	0	3
Dollott Holloway	ADJ P	ECE	PhD PhD	Y	N N	P	24	17	1
Ionel	P	ECE	PhD	Y	Y	F	7	25	0
Liao	Р	ECE	PhD	Y	Ν	F	11	5	0
Parker Singh	ACP	ME	PhD PhD	N N	N N	F	19	6	0
Sottile	P	MNG	PhD	Y	N	F	25	0	0
Taylor	ATP	CIV	PhD	Ν	Ν	F	12	4	5
Dunning	Р	University of ET	of Maii PhD	ne Y	N	F	25	5	0
Pearse	P	ET	M	N	N	F	15	0	15
Villeneuve	Р	ET	М	Y	Ν	F	14	10	5
Abed	niversi P	ty of Maryl ECE	and Co PhD	ollege	Park	1		1	
Gabriel	P	CIV,ENV,	PhD	N	N				
Caldaman	1 D	MTH	DFD	N	N				
Khaligh	ATP	ECE	PhD	Y	N				
Mayergoyz	Р	ECE	PhD	Ν	Y				
McCluskey	P	ME	PhD	N	Ν			ļ	
Ali	ATP	ECE	PhD	Y	Ν		[1	[
Lim	ADJ	ECE	M	Ŷ	N				
Wyatt	L/I	ECE	М	Y	Ν				
Bai	ACP	FCE	ngan - PhD	Dear Y	born N	F	6	1	0
Kim	ACP	ECE	PhD	N	N		0		0
Su	ATP	ECE	PhD	Y	Ν				
Wang	ATP	ECE	PhD	Y Ann A	rbor	F	2	0	0
Avestruz	ATP	EECS	PhD	Y	N	F	4	5	0
Hiskens	Р	EECS	PhD	Y	Y				
Hofmann Mathieu	ACP ATP	EECS	PhD PhD	N Y	N N				
U	niversi	ty of Minne	sota -T	win	Cities	5			
Dhople	ATP	ECE	PhD	Y	Ν				
Imbertson	L/I P	ECE	PhD	Y	N V				
Wollenberg	P	ERG	PhD	Y	Y				
1	Univers	sity of Miss	ouri - (Colur	nbia				
Devaney	EP	ECE	PhD	Y	N	P	46	4	0
Heise	ADJ	ECE	PhD	N	N	P	3	1	0
Gahl	Р	ECE,NUC	PhD	Ν	Ν	F	30	0	0
Kovaleski	P	ECE	PhD	N	N	F	13	4	0
U	niversi	ty of Misso	uri - K	ansas	City	1.	20		0
Goli	L/I	EECS	PhD	Y	N	F	1	0	0
Kelly Khan	L/I ACP	EECS	B	Y	N N	F	11	40	0
Kirkpatrick	L/I	EECS	M	Y	N	F	20	10	5
Sankar	ADJ	EECS	PhD	Y	Ν	F	0	20	0
Siddiki	L/I Univer	EECS	PhD	Y	N	F	4	0	0
Asgarpoor	P	ECE	PhD	Y	N	F	27	3	0
Choobineh	Р	ECE	PhD	Y	Ν	Р	37	0	3
Hudgins	P	ECE	PhD	Y	Y	F	29	0	0
Patterson	ADJ	ECE	PhD	Y	Y	P	39	0	3
Qiao	ACP	ECE	PhD	Y	Ν	F	8	0	0
Qu	ATP	ECE	PhD	Par	Ν	F	5	2	0
Ben Idris	ATP	EE,BIO	PhD	Y	N	F	2	0	0
Etezadi-Amoli	Р	EE,BIO	PhD	Y	Ν				
Fajri	ATP	EE,BIO	PhD	N	N	F	2	2	0
Livani Trzynadlowski	P	EE,BIO	PhD PhD	Y	N Y				
Symano Woki	Un	iversity of 1	New H	aven	<u> </u>	<u> </u>	. <u></u>	!	·
Lpizra	ADJ	ECE,CS	PhD	Y	N	Р	5	10	0
Manla Zhao	L/I ATD	ECE,CS	PhD PhD	Ý	N	F	4	0	0
		101,00	1.110		11		5	1	5

	-			d			Ex	perier	ice
Last Name	Rank or Positio	Department	Highest Degree	PES Membershi	IEEE Fellow	Full/Part Time	Academic	Power Industry	Other Industry
Uni	versity	of North C	arolina	at C	harlo	tte	-	1	1
Badrul	P	ECE	PhD	Y	N				
Cecchi	ATP	ECE	PhD	Y	N				
Enslin	P	ECE	PhD	Y	Y				
Lukic	P	ECE	PhD	Y	N	F	42	0	0
Manjrekar	ACP	ECE	PhD	Y	Ν				
Parkhideh	ATP	ECE	PhD	Ν	Ν				
Rodriguez-Medina	L/I	ECE	PhD	Y	N	F	2	6	0
Sukumar Zhao	ACP	ECE	PhD PhD	Y	N N	F	1	6	0
Zhao	Uni	versity of N	Jorth D	akot	11	г	1	0	0
Nejadpak	ATP	EE	PhD	Y	N	F	2	2	0
Ranganathan	ATP	EE	PhD	Y	Ν	F	10	0	0
Salehfar	Р	EE	PhD	Y	Ν	F	22	3	0
	U	niversity of	Oklaho	oma		1	-	1	1
Cheung	ADJ	ECE	PhD	Y	Y				
Jiang Pupolfsson	ACP P	ECE	PhD	Y N	N N				
Tang	ACP	ECE	PhD	N	N				
Wu	L/I	ECE	PhD	Y	N				
	U	niversity of	Pittsbu	ırgh					
El Nokali	ACP	ECE	PhD	Y	Ν	F	35	0	0
Grainger	L/I	ECE	PhD	Y	Ν	P	2	1	0
Kerestes	L/I	ECE	PhD	Y	N	F	0	3	10
Kusic Kwacineki	ACP	ECE	PhD	IN V	N	г F	20	3	0
Mao	ACP	ECE	PhD	Y	N	F	15	0	0
McDermott	ADJ	ECE	PhD	Y	Y	P	5	28	0
Paserba	ADJ	ECE	М	Y	Y	Р	0	30	0
Reed	Р	ECE	PhD	Y	Ν	F	10	25	0
Stanchina	P	ECE	PhD	Ν	Ν	F	20	20	0
Chourdhury		versity of S	BhD	iewai	n N	Б	27	0	0
Chung	P	ECE	PhD	Y	Y	F	16	1	0
El-Serafi	EP	ECE	PhD	Ŷ	Y	F	45	0	0
Faried	Р	ECE	PhD	Y	Ν	F	20	1	1
Gokaraju	Р	ECE	PhD	Y	Ν	F	13	2	2
Karki	Р	ECE	PhD	Y	N	F	15	2	0
Roy	EP	ECE	PhD	Y	Y	F	50	2	0
Sachuev	Er Univ	ECE Jersity of Su	PhD outh C:	1 arolin	1	Г	40	17	0
Benigni	ATP	EE	PhD	N	N	F	3	0	0
Dougal	Р	EE	PhD	Y	Ν	F	33	0	0
Ginn	ACP	EE	PhD	Y	Ν	F	14	0	0
Islam	L/I	EE	PhD	Y	Ν	F	1	0	0
Santi	ACP	EE	PhD outh E	Y	N	F	20	0	2
Fan	ACP	FF	PhD	V	1 N	1	[1	
Fehr	L/I	EE	PhD	Y	N				
Miao	ATP	EE	PhD	Y	Ν				
	Univ	ersity of So	uthern	Maiı	ıe		-		
Luck	ACP	ENG	PhD	Y	Ν				
Chalmanata	Ur	niversity of	St. The	omas	N	Б	5	25	0
Greene	ACP	EE	PhD	Y V	IN N	F	5	25	20
Hardie	ADJ	EE	PhD	N	N	F	3	5	25
Mowry	Р	EE	PhD	Y	N	F	13	2	25
Satyanarayan	ADJ	EE	М	Y	Ν	F	2	25	0
U	niversit	y of Tenne	ssee, C	hatta	noog	a			
Ahmed	ATP	EE	PhD	Y	N	F	7	0	6
Eltom	P	EE	PhD	Y	N	F	32	7	0
Kobet	L/I L/I	FF	M	r V	IN N	Р	24 0	27	0
Loveless	ATP	EE	PhD	N	N	F	3	0	4
Manning	ADJ	EE	PhD	N	N	Р	2	0	37
Ofoli	ACP	EE	PhD	Y	Ν	F	6	0	4
Reising	ATP	EE	PhD	N	Ν	F	3	0	12
Sisworahardjo	ATP	EE	PhD	Y	N	F	11	0	0
1 HOHIASOH		EE .	- rnD	1 1 N	I IN	i 12	44		14

	uo		e	dip		e	Ex	perier Years	ice
Last Name	Rank or Positi	Department	Highest Degre	PES Membersh	IEEE Fellow	Full/Part Tim	Academic	Power Industry	Other Industry
L L	Jnivers	ity of Tenn	essee, l	Knox	ville			1	-
Li	ATP	EECS	PhD PhD	N Y	N N				
Liu	P	EECS	PhD	Y	Y				
Pulgar	ATP	EECS	PhD	Y	Ν	F	15	0	0
Sun Tolbort	ATP	EECS	PhD	Y	N V				
Tomsovic	P	EECS	PhD	Y	Y				
Wang	Р	EECS	PhD	Y	Y				
	Unive	rsity of Tex	as at A	rling	ton	Б	-	0	0
Davoudi Kenarangui	ACP L/I	EE	PhD PhD	Y	N N	F	6 36	0	0
Lee	P	EE	PhD	Ŷ	Y	F	31	0	0
Madani	ATP	EE	PhD	Y	Ν	F	1	0	0
Wetz	ACP	EE toreity of Te	PhD	Aucti	N	F	6	0	0
Baldick	P	ECE	PhD	Y	Y	Р	24	2	0
Santoso	ACP	ECE	PhD	Y	Ν	F	14	6	1
Mondol	Univ	ersity of Te	xas at I	El Pa	SO	P	11	0	0
Ivrandan I	ATP Jnjvers	ECE ity of Texas	s at Sar	1 Ant	onio	г	11	0	0
Ahmed	ATP	ECE	PhD	N	N	F	1	5	0
Gatsis	ATP	ECE	PhD	Y	N	F	3	0	0
Johnson Krichnogwomi	ADJ	ECE	PhD	N	N	P	0	20	0
KIISIIIaswaiii	U	niversity of	the Pa	cific	IN	г	/	4	0
Mathews Rahim	P P	ECE ECE	PhD PhD	Y N	N N				
	ι	Jniversity o	f Toro	nto					
Dawson	P	ECE	PhD	Y	Y				
Lehn	P	ECE	PhD	Y Y	r N				
Prodic	Р	ECE	PhD	Y	N				
Tate	ATP	ECE	PhD	Y	N				
Taylor Timorahadi	ATP	ECE	PhD PhD	N	N N	F	15	3	3
Trescases	ATP	ECE	PhD	Y	N	1	15	5	5
		University	of Uta	h					
Stolp Mamill	L/I	ECE	M	N	N	F	20	0	0
Palmer	ADJ	ECE	PhD	Y	N	P	4	2	8
Bodson	Р	ECE	PhD	Y	Y	F	30	0	0
Parvania	ATP	ECE	PhD	Y	N	F	3	0	0
Ardakanı-Sahraeı	ATP	ECE Iniversity of	PhD f Verm	Ont	N	F	1	3	0
Almasalkhi	ATP	EE	PhD	Y	Ν	F	6	2	2
Hines	ACP	EE	PhD	Y	Ν	F	14	3	1
Christia	Un	iversity of V	Washin PhD	gton	N	<u> </u>	1	[_
El Sharkawi	P	EE	PhD	Y	Y				
Kirschen	Р	EE	PhD	Y	Y				
Nagel Ortogo Versuer	ADJ	EE	PhD	Y	N	Р	0	22	0
Ortega-vazquez Schneider	ADJ	EE	PhD	Y Y	N N	Р	0	11	6
Zhang	ATP	EE	PhD	Y	Ν				
DL v. 1	U	niversity of	Water	loo	N	Б	20		0
Bhattacharya Canizares	P	ECE	PhD PhD	Y	N Y	F	20	2	0
El-Saadany	P	ECE	PhD	Y	N	F	16	0	0
El-Shatshat	L/I	ECE	PhD	Y	Ν	F	16	0	0
Jayaram Kazerani	P	ECE	PhD	Y	Y	F	24	0	0
Salama	r P	ECE	PhD	Y	Y	F	30	0	0
D. 1. 1	Uni	iversity of V	West Fl	lorida		-	<u></u>	0	~
Ramachandran	ATP Univ	ENG ersity of We	PhD estern (Y Ontar	N io	F	21	0	0
Ajaei	ATP	ECE	PhD	Y	N	F	1	0	0
Moschopoulos	P	ECE	PhD	r N	IN N	F	28 18	3	0
Varma	P	ECE	PhD	Y	N	F	28	0	0
J	Jnivers	sity of Wisc	onsin -	Mad	ison				
DeMarco Farrell	P atd	ECE	PhD PhD	Y	N N	F	2	0	1
Fredette	ADJ	ECE	PhD	Y	N	1	2	0	1
Han	ATP	ECE	PhD	Ν	Ν				
Jahns	Р	ECE	PhD	Y	Y				

	_			٩.			Ex	perier	ice
Last Name	Rank or Position	Department	Highest Degree	PES Membershil	IEEE Fellow	Full/Part Time	Academic	Power Industry	Other Industry
Lesieutre	Р	ECE	PhD	Y	Ν				
Ludois	ATP	ECE	PhD	Y	N				
Sariiogiu Venkataramanan	P	EPD	PhD	Y Y	N N				
U	niversi	ty of Wisco	nsin - 1	Milw	aukee	2			
Cuzner	ATP	EECS	PhD	Ν	Ν	F	2	24	0
Nasiri	Р	EECS	PhD	Y	Ν	F	8	7	0
Wang	ACP	EECS	PhD	Y	N	F	5	3	0
ru	P	EECS	PhD	r Platte	N ville	г	30	0	0
Dehnavi	ATP	EE	PhD	N	N	F	2	9	0
Muslu	Р	EE	PhD	Ν	Ν				
Yang	ATP	EE	PhD	Y	Ν				
D	U	niversity of	Wyon	ing	м	-			
Duan Mulmahallinatna	ATP	ECE	PhD	Y	N	Б	20	0	1
Pierre	P P	ECE	PhD	N V	N V	F	20	0	2
I ICITC		/alparaiso U	Jnivers	ity	1	1	25	0	2
White	ATP	ECE	PhD	N	Ν	F	3	0	0
Virginia	Polyte	chnic Institu	ute and	Stat	e Uni	iversit	y		
Broadwater	P	ECE	PhD	Y	N	F	38	0	0
Burgos	ATP	ECE	PhD	Y	N	F	4	4	3
DeLaRee-Lopez	ACP	ECE	PhD	Y	N	F	30	2	0
Kekatos	ATP	ECE	PhD	Y	N	F	3	1	0
Lai	Р	ECE	PhD	Y	Y	F	20	0	7
Mili	Р	ECE	PhD	Y	Ν	F	28	0	0
Phadke	EP	ECE	PhD	Y	Y	P	30	22	0
Rahman Tam	P ACP	ECE	PhD	Y	Y	F	38	0	0
Thorp	P	ECE	PhD	Y	Y	Р	54	0	0
	Was	hington Sta	te Univ	versit	у				
Bose	Р	EECS	PhD	Y	Y	F	33	10	3
Carper	ACP	EECS	Μ	Y	Ν	P	0	21	0
Dubey	ATP	EECS	PhD	Y	N	F	1	0	0
Hahn	ATP	EECS	PhD	Y	N	F	2	0	8
Hauser	ACP	EECS	PhD	N	N	P	15	0	21
Kakar	Р	EECS	PhD	Y	Ν	F	40	0	0
Liu	Р	EECS	PhD	Y	Y	F	32	0	1
Lotfifard	ATP	EECS	PhD	Y	N	F	5	0	0
Mehrizi-Sani	ATP	EECS	PhD	Y	N	F	5	0	0
Pedrow	ACP	EECS	PhD	1 N	N	F	30	5	0
Roy	P	EECS	PhD	N	N	F	13	0	0
Schulz	Р	EECS	PhD	Y	Y	F	22	0	1
Srivastava	ACP	EECS	PhD	Y	Ν	F	13	1	0
Venkatasubramanian	Р	EECS	PhD	Y	Y	F	24	0	1
Lin	- W	ECF	Univer PhD	sity N	Y	F	28	0	0
Nazri	L/I	ECE	PhD	Y	N	F	11	27	27
Wang	ACP	ECE	PhD	Ŷ	N	F	10	5	0
Wang	Р	ECE	PhD	Ν	Y	F	26	0	0
a	W	est Virginia	Unive	rsity					
Choudhry	P	EECS	PhD	Y	N	<u> </u>			
Feliachi	P P	EECS	PhD	1 V	IN N	-			
Kushalani-Solanki	ATP	EECS	PhD	Y	N				
West V	irginia	University	Institut	e of '	Гесhı	nolog	y		
Hatipoglu	ATP	ECE	PhD	Y	Ν	F	4	1	1
17 1	Wes	tern Carolir	a Univ	/ersit	y N				
Karayaka	ATP	ET	PhD Uniw	Y	N	L	I	I	
Aravinthan	ATP	EECS	PhD	Y	Ν				
Jewell	Р	EECS	PhD	Ŷ	Y				
Pang	ATP	EECS	PhD	Y	Ν				
Tamtam	L/I	EECS	PhD	Y	Ν	F	3	0	0

	uo		æ	hip		e	Ex	cperien (Years)	ice)
Last Name	Rank or Positi	Department	Highest Degr	PES Members	IEEE Fellow	Full/Part Tim	Academic	Power Industry	Other Industry
	Worc	ester Polyte	echnic I	Instit	ute				
Clements	EP	ECE	PhD	Y	Y				
Dykes	L/I	ECE	PhD	Y	Ν				
Emanuel	Р	ECE	PhD	Y	Y				
Mahmoud	ATP	ECE	PhD	Y	Ν	F	1	3	0
McGrail	ADJ	ECE	PhD	Y	Ν				
Mirheydar	ADJ	ECE	PhD	Y	Ν				
Orr	Р	ECE	PhD	Y	Y				
Pajic	ADJ	ECE	PhD	Y	Ν				
Sorensen	L/I	ECE	М	Y	Ν				
Thompson	ADJ	ECE	PhD	Y	Ν				
Uzunovic	ADJ	EPD	PhD	Y	Ν				

			RESEARCH AREA															EXPI	ENDIT	URES (\$000)							
UNIVERSITY	Analysis		& Pwr Generation				ducation	tions & Cybersecurity	n and Analysis	rformance		tion & Measurements		d Implementation		robability. Applications	u	uo	otection Devices		Junnand	COVERIMENT	Domestic Utility Other Domestic Industry		Labot	10141		
	Distribution System	Electric Machinery	Energy Development	Energy Storage	Intelligent Grid	Power Electronics	Power Engineering E	Pwr Sys Communica	Pwr Sys Computatio	Pwr Sys Dynamic Pe	Pwr Sys Economics	Pwr Sys Instrumenta	Pwr Sys Operations	Pwr Sys Planning and	Pwr Sys Relaying	Reliability, Risk & P	Renewable Generatic	Substation Automati	Switchgear, Surge Pr	Transformers	Non-Equip.	Equip.	Non-Equip.	Equip.	Non-Equip.	Equip.	Non-Equip.	Equip.
Alabama at Birmingham					x	х															0	0	80	0	0	0	80	0
Alaska Fairbanks	v	х	х	X	X	v			X	х	х	v			v		X				150	200	200	0	0	0	150	220
Arizona State	x		x		x	X	x	x	x			X			X		х				1771	0	1413	0	100	0	3284	0
Arkansas				х	x	x								х			х			х	1600	0	400	0	0	0	2000	0
Auburn	х					Х			Х			Х									100	0	200	0	0	0	300	0
Baylor		_	Х		X	х			Х		X			х			х				300	25	0	0	300	25	600	50
Boise State Buffalo State	v	x			x		v		X	X					v		X				5 10	25	08	0	0	0	10	25
Calgary	~	x	х	х	X	х	x		х						~						800	700	400	100	250	50	1450	850
California Polytechnic	х		х	х	х	х		х	х	х		х			х		х		х		200	20	15	0	50	5	265	25
California State, Fresno						х							х				х	х	х		0	45	2	0	0	0	2	45
California State, Northridge	-	-	-	-	x		-	-			-	-	-	_	-			-			0	20	0	0	0	0	0	20
California State, Sacramento	X	x		v	v	X	х	v							X		x				12	55	25	12	425	40	32	57 77
California, Los Angeles		^		~	X	х		л									~				0	0	0	0	0	0	0	0
Carnegie Mellon				х	х			х	х	х	х	х	х								3000	500	1000	0	1000	100	5000	600
Case Western Reserve	х			х	x	х	х		х	х	х		х				х				300	0	300	0	0	1000	600	1000
Central Florida		_	Х		X					х							х				1200	0	40	0	50	0	1290	0
Clarkson	X	x	v	v	x		x	v	v	v							x				425 582	300	30 95	199	262	60	455	559
Cleveland State	х	x	X	~	x	x	x	X	X	X	х		х	x			X				0	0	20	10	0	0	20	10
Colorado School of Mines		x		х	х			х					х			х	х				0	0	50	0	150	10	200	10
Colorado State			х		х			х	х		х		Х	х			х				2393	0	0	0	0	0	2393	0
Concordia		х		X													х				682	115	80	10	66	83	828	208
Denver				X	x				x		x		X	x		х	x				500	0	0	0	0	0	500	0
Drexel			х	х	x	х			x		x		х	x			x				300	300	0	0	0	0	300	300
FAMU-FSU		х			х				х	х							х	х			5448	178	0	0	490	193	5938	371
Florida International		х		х	х	х		х	х	х			х				х				9000	100	7000	30	500	500	16500	630
Gannon Coorsis Inst. of Tashnalasy		х	X					X									X				0	0	0	0	2000	0	0	0
Georgia lifst. of Technology			х		X	X	x	X		X	X		X				х			х	2000	0	0000	5	2000	0	0	5
Houston						х	~														0	0	0	0	0	0	0	0
Howard					х												х		х		500	600	40	26	0	0	540	626
Idaho	х	х	х	х		х	х	х		х			х		х	х	х			х	190	0	160	0	140	55	490	55
Illinois at Urbana-Champaign	х	x	X		X	х	X	X	X	X	X	X	X	X			X				2150	300	240	25	75	10	2465	335
Indiana Purdue Indianapolis		x	х	X	x	x	х	X	X	x	X	X	X	х	X	x	х	х			2000	0	0	0	200	0	100	9300
Iowa State	х		х	х	x			х	х	x	х		х	х			х				1350	150	315	0	650	20	2315	170
John Brown					х											х	х				0	0	0	3	0	0	0	3
Kansas State					х	х	х		х		х		х	х			х				300	0	60	0	0	0	360	0
Kennesaw State		v	<u> </u>		v	v	v	<u> </u>	v					├	v		х	<u> </u>	\vdash	<u> </u>	15	0	0 50	0	0	0	15	0
Lake Superior State		^	-	-	^	^	^	-	^			-	-		^		x	-		-	0	0	0	0	4	3	4	3
Lamar	L	x	х	L	х	х					L	L	L	L	L		х				100	300	0	100	0	0	100	400
Lawrence Technological							х									х					0	0	0	0	0	0	0	0
Louisiana State, A&M College		х	Х	х	X	х	х		Х	х	X		х	х	X		х	х		х	50	2	70	20	0	0	120	22
Marquette		x			X										X			х			20	0	0	0	20	20	120	20
Maryland College Park		~	х	х		х	х		х		х										1000	0	0	0	700	0	1700	0
Massachusetts Inst. of Tech.	х	х	х		х	х	х														1500	200	0	0	1000	100	2500	300
McGill					x	х			х		х		х	х	х		х				300	175	100	0	0	0	400	175
Memorial, Newfoundland Memohis		x		v	X	Х				X					X		v			v	95	4	83	0	0	0	95 83	4
Miami	x	х	х	л	X	x	x			л							X			л	0	0	0	0	0	0	0	0
Michigan State		x	х	х	x	х			х	х				х			x				224	0	56	0	421	0	701	0
Michigan Tech.	х			х	х			х	х	х			х		х		х			х	721	0	288	0	19	30	1028	30
Michigan, Ann Arbor	х	х		X	X	х			х	х	х		х	х			X				650	0	0	0	225	10	875	10
Minnesota State Mankato		v	y	X	X		X		y							X	X		\vdash		000	0	001	0	0	45	0	45
Minnesota, Twin Cities		^	^		A	-	x	-	^	х	x	x	х	x	х		x	-	\vdash	-	20	0	120	70	0	0	140	70
Mississippi State				х	x		x				x	Ĺ	x	х	Ĺ		x				490	0	263	0	248	0	1001	0
Missouri, Columbia			х	х	х		х										х				208	0	85	0	23	0	316	0
Missouri, Kansas City						X								<u> </u>							20	30	0	0	0	0	20	30
Montana State, Bozeman		-	y	y		X			X y		-	-	-	-	-						∠300 200	25 0	0	0	0	- 55 - 0	200	0
Nebraska, Lincoln	х	х	^	X	х	X			X	х			х	х	-		х				850	25	120	0	150	0	1120	25
Nevada, Reno		1			х	х								х			х				100	0	50	130	0	0	150	130

Appendix Table 3. Power Program Research Activities and Funding in 2015-16

								ŀ	RESI	EAR	СНА	ARE	4										EXPI	ENDIT	URES	(\$000)		
UNIVERSITY	Analysis		& Pwr Generation				ducation	tions & Cybersecurity	1 and Analysis	formance		tion & Measurements		d Implementation		obability. Applications	n	n	otection Devices		, and the second second	COVERIMENT		Domesue Cunity	Other Domestic	Industry	1797 H	Lotai
	Distribution System A	Electric Machinery	Energy Development	Energy Storage	Intelligent Grid	Power Electronics	Power Engineering E	Pwr Sys Communicat	Pwr Sys Computation	Pwr Sys Dynamic Per	Pwr Sys Economics	Pwr Sys Instrumenta	Pwr Sys Operations	Pwr Sys Planning and	Pwr Sys Relaying	Reliability, Risk & Pr	Renewable Generatio	Substation Automatic	Switchgear, Surge Pr	Transformers	Non-Equip.	Equip.	Non-Equip.	Equip.	Non-Equip.	Equip.	Non-Equip.	Equip.
New Haven	х		х	х	х	х							х	х			х				0	0	0	0	15	5	15	5
New Jersey Inst. of Tech. New Mexico State	x		x	X	x			x	x		-	-	x		x	x	x				2500	300	100	25	500	150	3050 700	4/5
New York, Polytechnic	x	х		х	x	х		л	~	х	х		~	х	~	X	X			х	250	0	0	0	200	0	450	0
North Carolina State, Raleigh	х	х		х	х		х	х	х	х	х		х	х			х	х			4000	0	500	0	500	0	5000	0
North Carolina, Charlotte		X	X	X			X		X				x			x	X				1014	0	140	0	1154	0	2308	0
North Dakota State	X		X	X	х	X	X	X	X	x	X	X	x	X			X	X			1300	0	0	0	8	0	123	0
Northeastern	х		х		х	x	х	X	x												300	10	120	0	320	50	740	60
Northern Arizona		х			х	х											х				0	0	0	0	0	0	0	0
Ohio Northern Ohio State		X			X	X	X		v		x		x			v	X				2200	0 40	0	0	250	0	2450	0 40
Oklahoma	x	л	х		X	Λ	л		x	х	x	х	x	х		~	х				50	0	110	6	60	0	2430	6
Oklahoma State			х		х	х				х	х					х	х				26	0	30	0	10	0	66	0
Old Dominion	х		х	х	х	х	х	X	X							х	x	x	х		50	500	20	20	0	0	70	520
Oregon State Pacific		X			х	х	x	X	X	x		х			x		x				4000	0	250	250	0	0	4325	0
Pennsylvania State, Harrisburg					х				х			х					x				30	0	25	0	0	35	55	35
Pittsburgh	х	х	х		х	х							х	х	х	х	х				50	0	250	0	300	300	600	300
Portland State Purdue Northwest		X	v	X	х	v	х		v	v	x	v	x				X				150	0	150	0	0	0	300	0
Purdue, West Lafayette		X	~	X	х	X			~	x	x	~	~				x			х	800	0	0	0	150	50	950	50
Rensselaer Polytechnic Inst.		х		Х	х	х	х	х	х	х	х	х	х				х				1880	10	125	10	0	0	2005	20
Ryerson				X	х	X											x				250	10	10	0	40	0	300	10
Santa Clara				x	х	X				x							x				0	0	0	0	0	0	0	0
Saskatchewan				х	х				х	х	х		х	х	х		х				200	5	300	1	0	5	500	11
Seattle			х		х				х								х				39	0	0	0	0	0	39	0
South Carolina South Dakota Mines and Tech		x	x	x	x	X			X			х		X	X		x			X	2000	0	0	10	50 0	0	0	10
South Dakota State				X	x				х	х			х	х	х		x				440	30	10	1	20	0	470	31
South Florida				х	х																100	0	200	0	0	750	300	750
Southern Maine St Thomas	x			x	х	x	x						x		x	x					0	0	700	150	20	100	30 950	250
Suffolk	А	х		~		~	~						^		~	л	х			х	0	0	0	0	0	0	0	0
Syracuse	х						х	х				х	х	х			х			х	500	0	0	0	50	0	550	0
Temple Tennessee State						х	v	х	х	х	-	-	-								180	84	0	0	0	0	180	84
Tennessee, Chattanooga	x	х	x	х	х	х	X	х	х	х	х		x	x	x		х	х		х	556	0	225	0	0	1200	781	1200
Tennessee, Knoxville		х	х	х	х	х	х	х	х	х	х	х	х	х	х		х	х	х	х	6900	75	0	0	450	10	7350	85
Texas A&M		х	<u> </u>	x	X			<u> </u>	х	х	х	<u> </u>	<u> </u>	х	х	~	x		~		2000	20	100	50	2000	100	4100	170
Texas at Arington Texas at Austin	х	-		X	X	x		-	х		х	-	х	х	-	X	x		X		500	000	0	0	203 50	0	550	000
Texas at El Paso	х		х	х	х	х	х				х		х	х			х				85	0	0	0	155	0	240	0
Texas at San Antonio	x		x		x	x							x				х				250	0	50	0	0	0	300	0
Texas Tech			x	x	x	X	x		x	x	x	x	x			x	x				250	2000	500	0	500	0	2000	2000
Tufts			~	~	x		A		x	x			~			A	A				500	30	0	0	0	0	500	30
US Military Academy					х				х		х	х					x				0	220	0	0	0	0	0	220
Utah Valparaiso	x	X	x	X	х	v	X				x		x	х		X	X				250	0	150	0	50	0	450	0
Vermont					х	Λ	X			х						х					150	0	50	0	0	0	200	0
Virginia Polytechnic				х	х	х			х	х		х	х		х		х				2074	158	0	0	0	0	2074	0
Washington Washington State	х			X				X	X		х		x	x			X				1000	400	0	0	0	0	1000	400
Waterloo		Å	X	x	X	Ă	Å	Á	X	X	x	-	x	x	-		X			х	3500	1100	1000	100	100	0	4600	1200
Wayne State		х	х	х	х				х	х			х	х			х				400	0	0	0	50	0	450	0
West Florida	x	X	х	х	X			<u> </u>	х		х	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	х		<u> </u>		92	0	0	0	0	0	92	0
West Virginia West Virginia, Inst. of Tech	X	X			х	x	х	-	х	X	-	-	х		X		x	х	-		35	25	0	0	0	0	35	25
Western Carolina			х	x									Ĺ								3	0	0	0	0	0	3	0
Western Ontario	х		х	х		х			х	х		х			х		х	х			448	50	404	20	20	10	872	80
Wichita State Wisconsin Madison	v	v		X	X	v	v	X	X	v	X	X	X	X			X				2344	0	120	60	0	0	220	60 219
Wisconsin, Milwaukee	x	X		X	X	X		X	^	X	^	^	^	^			X		х		446	0	0	100	241	370	687	470
Wisconsin, Platteville		х	х		х	х	х		х								х				0	0	0	0	0	0	0	0
Worcester Polytechnic				х	х			Ŧ	v	v	<u> </u>	<u> </u>	<u> </u>		<u> </u>		x				200	0	0	0	0	0	200	0
n yonning			L					Á	X	X	1	1	1		1						700	U	U	U	U	13	200	13

Appendix Table 4. Education Program Characteristics

Abbreviations used in Appendix Table 4:

Calendar:

- Semester
- S: Q: Quarter
- O: Other (see notes at end table)

Cooperative Program:O:OptionalM:MandatoryN:Not available

						Undergrad	luate P	rogram						e	e	
University	Calendar	Mandatory Courses for All	Mandatory Courses in Selected Offerings	Elective Courses	Special Track	Special Track Title	Minor Offering	Minor Offering Title	Certificate	Certificate Title	Coop Program	Master's Degree	Doctoral Degree	Master's Online Degre	Doctoral Online Degre	Provided K-12 Help
Alabama at Birmingham	s	x		x					x	ECE Power System Certificate	0	x	x			
Alaska Fairbanks	S	х	х	х							Ν	х	х			х
Alberta	S			х							0	х	х			
Arizona State Arkansas	s	x		x					x	Graduate Certificate in Sustainability with Emphasis in Electric Energy Systems	N O	x	x	x		x
Auburn	S	х		х							0	х	х	х		
Baylor	S	 		х		ļ		ļ		ļ	N	х	х			х
Boise State	S			х		6 G . I					N	х	х			
Buffalo State	S		x	х	x	Option	х	Energy Systems Minor			N					x
Calgary	S	х		х		Bower					0	х	х			X
California Polytechnic	Q		v	x	х	Concentration					0	x		-		x
California State, Fresho	5		X	X							0	X				X
	5			л						Power	0	л				
California, Berkeley*	s	x	X	x			x	Undergraduate Minor in Energy and Resources	x	Certificate	0	x	x			x
California, Los Angeles*	Q					Power System with Solar Power Plant		Solar Wind Hybrid Power Plant	x	UCLA Online Power Systems Certificate	Ν	x		x		x
Carnegie Mellon	S			х		r ower r kunt		T Mille		Certificate	Ν	х	х			х
Case Western Reserve	S		х	х	х	Energy					0	х	х	х		
Central Florida	S		x	x	x	Power and Energy Systems					0	x	x			x
Clarkson	s	x	x	x					x	Undergraduate Concentration in Power Engineering	0	x	x	x	x	
Clemson	S	х		х							0	х	х			
Cleveland State	S	х		х			ļ				0	х	х			х
Colorado School of Mines Colorado State	s s	x		x					x	Power and Energy Certificate	N O	x	x	x	x	x
Concordia	Q	х		х							0	х	х			х
Cornell	S			x							0	х	x			
Denver	Q	х		х							Ν	х	х			х
Drexel	Q			x	x	Power/Systems & Controls					М	х	x	х		x
FAMU-FSU	S			x							Ν	х	х			х
Florida International	S	х	х	х	х	Cyber Security					Ν	х	х	х	х	x
Gannon	S	<u> </u>		х			<u> </u>		L		0					
Georgia Inst. of Technology	S	x		х		Engineering Management -					0	х	х			х
Gonzaga	S	x	х	x	х	Electrical Engineering Track					Ν	x		x		

	Undergraduate Program									æ	æ					
University	Calendar	Mandatory Courses for All	Mandatory Courses in Selected Offerings	Elective Courses	Special Track	Special Track Title	Minor Offering	Minor Offering Title	Certificate	Certificate Title	Coop Program	Master's Degree	Doctoral Degree	Master's Online Degr	Doctoral Online Degre	Provided K-12 Help
Houston	S		x	х							0	х	х	х		
Howard	S	x		x		Denne Frenheide					N	X	x			x
Idano Illinois at Urbana Champaign	5	x		x	x	Power Emphasis					0	x	x	x	X	x
Illinois Inst. of Technology	S		x	x							0	x	x	x		x
Indiana, Purdue Indianapolis	S			x							Õ	x	x			
Iowa State	S	х	х	х			х	Wind Energy			Ν	х	х			
John Brown	S		х	х							Ν					х
Kansas State	S	x	х	х							0	х	х	х	х	
Kennesaw State Kentucky	s	x	x	x					x	Undergraduate Certificate in Power and Energy	0	x	x	x		x
Lake Superior State	s	x	x	x	x	Sustainable Energy Concentration					0					x
Lamar	S		x	х							Ν	х	х	х	х	х
Lawrence Technological	s			x	x	Concentration in Electrical Energy Engineering					0	x				
Louisiana State, A&M College	S	х		х							0	х	х			х
Maine	s	x		x	x	Concentration in Power Systems					0	x	x			x
Marquette	S		х	х							0	х	х			
Maryland College Park	S	-	x	X	х	Power Systems					0	X	x			X
McGill	s	x		x	x	Enhanced Power Engineering Concentration					0	x	x			
Memorial, Newfoundland	S	x		х		concentration					М	х	х			
Memphis	S		х	х							0	х	х			х
Miami	S			х							0	х				х
Michigan State	S	х		Х						0	0	х	х			
Michigan Tech.	S	x	x	x					x	Electric Power Engineering	0	x	x	x	x	x
Michigan, Ann Arbor	S			х							N	х	х			х
Minnesota State, Mankato	s		x	x			x	Electronic Engineering Technology Minor Power Option	x	Renewable Energy Certificate Program	N	x	x	X		x
Minnesota, Twin Cities	S			х				•			Ν	х	х			х
Mississippi State	S	x		х							0	х	х	х	х	х
Missouri of Science and Tech.	s	x	x	x	x	Power and Energy Emphasis Area			x	Electric Power Systems Engineering; Electric Machines and Drives	0	x	x	х	х	х
Missouri, Columbia	s		x	x	x	Power Track	x	Minor in Energy Engineering			0	x	x			x
Missouri, Kansas City	S	х		х							0	х	х			х
Montana State, Bozeman	S	x		x	x	Power, Energy, Control Power and					0	x	x			x
Nebraska, Lincoln	S		x	x	x	Energy Systems				Renewable	0	x	х			х
Nevada, Reno	s	x	x	x					x	Energy, Graduate Certificate	N	x	x			x
New Haven	S			x	x	Electric Power Engineering					0	х				
New Jersey Inst. of Tech.	S	х	х	х	х	Power Systems					0	х	х	х		х
New Vork Polytochric	S	х	~	X	v	Power					N	X	x	х	х	X
INCW FORK POLYTECHNIC	3	1	X	x	X	rower					IN	x	X			X

	Undergraduate Program								e	e						
University	Calendar	Mandatory Courses for All	Mandatory Courses in Selected Offerings	Elective Courses	Special Track	Special Track Title	Minor Offering	Minor Offering Title	Certificate	Certificate Title	Coop Program	Master's Degree	Doctoral Degree	Master's Online Degre	Doctoral Online Degre	Provided K-12 Help
North Carolina State, Raleigh	s		x	x	x	Renewable Electric Energy Systems Concentration			x	Renewable Electric Energy Systems Concentration, Graduate	0	x	x	x		x
North Carolina, Charlotte*	S		х	x							0	х	x			х
North Dakota	S	х	x	x							0	x	x	х	х	х
North Dakota State	S	x		x							0	x	x			x
Northern Arizona	5			x							N	x	x	x		x
Ohio Northern	s	x	x	x	x	Advanced Energy					0	~				~
Ohio State	S			x		Concentration					N	x	x			x
Oklahoma	s		x	x	x	Accelerated Energy Finance Program					0	x	x			x
Oklahoma State	S		x	x		Trogram					N	x	x			
Old Dominion	S	х	х	х							Ν	х	x			х
Oregon State	Q	х		х							0	х	х			х
Pacific	S	x		х							М					
Pennsylvania State, Harrisburg	S	x		x							Ν	x		х		х
Pittsburgh	s		x	x	x	Electric Power Engineering Concentration			x	Graduate Electric Power Engineering Certificate Program	0	x	x	x		x
Portland State	Q	x	x	x	x	Power Engineering					0	x	x			
Purdue Northwest	S		x	x			x	Power and Energy Systems			N	x				x
Purdue, West Lafayette	S			x	x	Power & Energy Systems					0	x	x	x		
Rensselaer Polytechnic Inst.	s	x		x	x	Power Engineering Concentration					0	x	x			x
Ryerson	S			х							0	х	х			
San Jose State	S			х						G	N	х				
Santa Clara	Q		x	x					x	Renewable Energy	0	x	x			
Saskatchewan	S	х	x		х	Power & Energy					0	x	x			
Seattle	Q	х		x							N					
South Dakota State	5			x							0	x	x	х	х	x
South Dakota, Mines and Tech	S	x	<u> </u>	x	<u> </u>				-		0	x	А	x		x
South Florida	S	x		x					1		0	x	x	x	х	x
Southern Maine	S	x		x							0					x
St. Thomas	s		x	x	x	Power Track			x	Power Systems and Electronics Certificate	0	x				
Suffolk	S	x	1	x					1		Ν	1				х
Syracuse	S	х	х	х					L		0	х	х			х
Temple	S			х							0	х	х			х
Tennessee State	S		х	x							0	х	х			х
Tennessee, Chattanooga	s			x	x	Power Systems			x	Power System Protection, Sustainable Electric Energy, Smart Grid, Smart Power Distribution	N	x				x
Tennessee, Knoxville	s	x	x	x	x	Power and Energy Systems			x	in Power and Energy Systems	0	x	x			x
Texas A&M	S		x	x							0	x	x			
Texas at Arlington	S		х	х							0	х	х			х

	Undergraduate Program													8	0	
University	Calendar	Mandatory Courses for All	Mandatory Courses in Selected Offerings	Elective Courses	Special Track	Special Track Title	Minor Offering	Minor Offering Title	Certificate	Certificate Title	Coop Program	Master's Degree	Doctoral Degree	Master's Online Degre	Doctoral Online Degree	Provided K-12 Help
Texas at Austin	s		x	x	x	Energy Systems and Renewable Energy					0	x	x			
Texas at El Paso	S			х							Ν	х	х			
Texas at San Antonio	S			х							0	х	х			
Texas Tech	S			х							0	х	х			х
Toronto	s		x	x	х	Energy Systems Engineering	х	Sustainable Energy			0	х	x			x
Tufts	S			х							0	х	х			х
US Military Academy	S	x	x	x	х	Alternative Energy					Ν					
Utah	S			х							0	х	х	х		х
Valparaiso	S			х							0					
Vermont	S			x	x	Energy Systems Track					0	x	x			x
Virginia Polytechnic	S	x		х							0	х	х			х
Washington	Q		x	x	x	Large Scale Power Systems, Sustainable Energy, Power Electronics and Electric Drives					0	x	x			x
Washington State	S	x	x	x	x	Power Engineering					0	x	x	x		
Waterloo	Q	х		х							М	х	х	х		
Wayne State	S			х							0	х	х			х
West Florida	S	x	х	х							Ν		-			х
West Virginia	S	х		х							0	х	х			
West Virginia Inst. of Tech.	s	x	x	x	x	Electrical Energy Systems Emphasis					0					x
Western Carolina	s	x			x	Electric Power Engineering					Ν					
Western Ontario	S	x	x	x	x	Power Systems Option					0	х	x			x
Wichita State	S	х		х							0	х	х			х
Wisconsin, Madison	S			х							0	х	х	х		х
Wisconsin, Milwaukee	S	х		х							0	х	х			х
Wisconsin, Platteville	s		x	x			x	Sustainable and Renewable Energy Systems			0					
Worcester Polytechnic*	0			х							0	х	х	х		х
Wyoming	S	х		х							Ν	x	х			х

*Notes:

Calendars: Worchester Polytechnic Institute (WPI) uses quarters for undergraduate education and both 10 week and 14 week schedules for graduate education. The 10 week duration is common for the part-time, working professional graduate students. The 14 week semesters are used for full time graduate students.

Offerings:

- University of California, Berkeley also offers a joint major in EECS and Nuclear Engineering.
- University of California, Los Angeles also offers "Electrical Power Controlling".
- University of North Carolina, Charlotte also offers a concentration in power engineering.

Appendix Table 5. Estimated Degrees Granted and Student Enrollments in 2015-16

Abbreviations used in Appendix Table 5. U: Undergraduate; M: Master's; D: Doctoral (PhD); FT: Full-Time; PT: Part-Time

	Es	st. Degre Granted	es	D S	omestic tudent I	: Graduate Enrollment		Inte St	ernation udent E	al Grad nrollme	uate nt	Total	Gradu Enrol	iate Stud Iment	ent	Est. Domestic Undergraduate
University			-	F	Т	РТ		F	Т	Р	т	FI	ſ	РТ	ſ	Enrollment
	U	М	D	М	D	М	D	М	D	М	D	М	D	М	D	%
Alabama at Birmingham	10	3	1	1	0	10	3	0	0	0	0	1	0	10	3	85
Alaska Fairbanks	8	0	0	3	1	0	0	1	0	0	0	4	1	0	0	90
Alberta	70	20	10	5	5	0	0	15	30	0	0	20	35	0	0	85
Arizona State	60	75	18	19	15	0	0	94	60	0	0	113	75	0	0	87
Arkansas	15	8	3	8	3	5	0	25	8	2	0	33	11	7	0	90
Auburn	35	15	5	2	2	0	0	12	5	0	0	14	7	0	0	95
Baylor	5	3	2	2	2	1	1	3	4	0	0	5	6	1	1	90
Boise State	6	2	0	0	0	2	0	4	2	0	0	4	2	2	0	80
Buffalo State	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	98
Calgary	50	30	20	9	5	2	1	18	14	0	0	27	19	2	1	82
California Polytechnic	50	15	0	10	0	3	0	2	0	0	0	12	0	3	0	95
California State, Fresno	10	3	0	6	0	1	0	30	0	0	0	36	0	1	0	97
California State, Northridge	25	13	0	3	0	0	0	12	0	0	0	15	0	0	0	70
California State, Sacramento	40	16	0	11	0	3	0	6	0	0	0	17	0	3	0	95
California, Berkeley	20	2	5	6	17	0	0	4	8	0	0	10	25	0	0	85
California, Los Angeles	5	5	0	0	0	5	0	0	0	0	0	0	0	5	0	100
Carnegie Mellon	20	30	10	0	0	0	0	25	10	0	0	25	10	0	0	10
Case Western Reserve	3	4	4	2	1	0	0	4	2	0	0	6	3	0	0	75
Central Florida	20	5	3	1	2	4	2	4	10	0	0	5	12	4	2	95
Clarkson	30	3	0	1	0	1	3	1	7	0	0	2	7	1	3	95
Clemson	30	5	5	5	2	2	0	5	23	1	0	10	25	3	0	90
Cleveland State	20	18	2	5	4	5	4	15	6	0	0	20	10	5	4	90
Colorado School of Mines	20	15	8	4	1	10	2	4	8	0	0	8	9	10	2	90
Colorado State	12	10	4	3	0	5	3	8	10	12	0	11	10	17	3	25
Concordia	55	60	8	1	1	0	1	5	15	0	0	6	16	0	1	40
Cornell	5	20	2	5	1	0	0	15	13	0	1	20	14	0	1	80
Denver	8	6	3	2	0	2	1	10	20	0	0	12	20	2	1	90
Drexel	30	19	0	0	6	14	1	9	3	0	0	9	9	14	1	80
FAMU-FSU	20	10	7	6	3	0	0	20	8	0	0	26	11	0	0	90
Florida International	60	20	8	15	10	25	5	30	35	20	2	45	45	45	7	95
Gannon	5	5	0	10	0	2	0	15	0	0	0	25	0	2	0	50
Georgia Inst. of Technology	30	25	7	12	13	8	0	40	50	0	0	52	63	8	0	75
Gonzaga	6	16	0	0	0	25	0	0	0	4	0	0	0	29	0	86
Houston	20	35	6	10	0	8	1	15	4	5	0	25	4	13	1	90
Howard	10	5	2	3	0	0	0	3	2	0	0	6	2	0	0	75
Idaho	22	19	2	5	0	30	9	11	6	7	2	16	6	37	11	86
Illinois at Urbana-Champaign	80	13	8	12	11	1	1	16	18	1	0	28	29	2	1	75
Illinois Inst. of Technology	10	40	4	1	0	10	0	50	20	0	0	51	20	10	0	60
Indiana, Purdue Indianapolis	3	2	0	1	0	0	0	2	0	0	0	3	0	0	0	60
Iowa State	50	1	4	1	6	0	0	2	19	0	0	3	25	0	0	80
John Brown	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	70
Kansas State	15	10	4	1	3	25	2	6	5	0	0	7	8	25	2	80
Kennesaw State	8	2	0	0	0	1	0	1	0	0	0	1	0	1	0	95
Kentucky	20	9	3	5	0	0	2	10	10	0	0	15	10	0	2	90

	Es	st. Degre Granted	ees	D Si	omestic tudent I	e Graduate Enrollment	1	Inte St	rnation udent E	al Grad nrollme	uate ent	Total	Gradu Enrol	1ate Stud Iment	ent	Est. Domestic Undergraduate
University		orunte	•	F	Т	РТ		F	Т	Р	т	FI		РТ		Enrollment
	U	М	D	м	D	М	D	М	D	М	D	М	D	М	D	%
Lake Superior State	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	80
Lamar	25	50	5	3	1	2	0	45	4	0	0	48	5	2	0	80
Lawrence Technological	8	1	0	0	0	2	0	0	0	0	0	0	0	2	0	80
Louisiana State, A&M College	30	4	2	2	2	0	0	10	10	0	0	12	12	0	0	90
Maine	22	1	2	0	0	0	0	1	2	0	0	1	2	0	0	90
Marquette	5	3	2	2	2	2	1	3	5	0	0	5	7	2	1	100
Maryland College Park	60	10	5	5	5	1	0	5	15	0	0	10	20	1	0	90
Massachusetts Inst. of Tech.	4	10	10	10	15	0	0	10	15	0	0	20	30	0	0	50
McGill	15	8	4	2	5	2	0	10	10	0	0	12	15	2	0	70
Memorial, Newfoundland	10	8	1	1	2	2	1	17	13	2	0	18	15	4	1	90
Memphis	15	5	5	3	1	2	1	7	5	1	2	10	6	3	3	95
Miami	5	2	0	5	0	0	0	4	0	0	0	9	0	0	0	85
Michigan State	20	7	4	3	8	0	2	2	14	0	0	5	22	0	2	80
Michigan Tech.	42	20	2	2	1	16	4	95	15	7	0	97	16	23	4	88
Michigan, Ann Arbor	15	15	3	5	7	3	0	20	9	0	0	25	16	3	0	70
Michigan, Dearborn	30	10	3	20	0	20	0	40	5	10	5	60	5	30	5	70
Minnesota State, Mankato	5	4	0	5	0	0	0	35	0	5	0	40	0	5	0	75
Minnesota, Twin Cities	50	15	3	3	2	6	5	2	9	0	0	5	11	6	5	75
Mississippi State	10	8	6	3	3	3	3	8	13	0	0	11	16	3	3	100
Missouri of Science and Tech.	35	18	3	8	4	10	0	38	24	0	0	46	28	10	0	95
Missouri, Columbia	32	4	0	6	2	15	4	24	29	28	29	30	31	43	33	75
Missouri, Kansas City	16	13	0	1	0	2	0	28	3	0	0	29	3	2	0	90
Montana State, Bozeman	12	3	2	4	1	0	0	0	1	0	0	4	2	0	0	90
Nebraska, Lincoln	20	2	4	3	2	0	0	3	24	0	0	6	26	0	0	85
Nevada, Reno	10	3	1	2	0	0	0	2	5	0	0	4	5	0	0	85
New Haven	5	25	0	2	0	0	0	30	0	0	0	32	0	0	0	100
New Jersey Inst. of Tech.	20	28	5	7	1	3	1	18	3	0	0	25	4	3	1	90
New Mexico State	15	12	5	7	2	1	0	13	6	0	0	20	8	1	0	90
New York Polytechnic	15	40	6	5	2	10	3	60	20	0	0	65	22	10	3	80
North Carolina State, Raleigh	45	30	8	15	6	4	2	35	40	8	4	50	46	12	0	95
North Carolina, Charlotte	9	5	3	2	2	2	1	20	25	0	0	20	30	2	1	85
North Dakota Stata	22	1	0	0	2	0	0	30	7	0	0	20	7	0	0	90
Northoastern	10	1	2	3	1	2	0	2	10	0	0	22	11	2	0	80
Northern Arizona	2	2	2	0	0	0	0	1	0	0	0	1	0	0	0	50
Ohio Northern	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90
Ohio State	60	36	6	5	3	2	0	43	25	0	0	48	28	2	0	80
Oklahoma	20	8	5	3	1	0	1	7	3	0	0	10	4	0	1	100
Oklahoma State	15	3	3	0	0	2	0	10	8	4	0	10	*	6	0	70
Old Dominion	30	15	0	3	2	7	0	5	3	- -	0	8	5	7	0	90
Oregon State	50	12	6	12	8	0	0	10	6	0	0	22	14	0	0	80
Pacific	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	95
Pennsylvania State. Harrisburg	12	4	0	0	0	2	0	5	0	0	0	5	0	2	0	60
Pittsburgh	35	15	5	17	8	20	5	3	2	0	0	20	10	20	5	80
Portland State	20	12	0	10	1	20	3	4	0	0	0	14	1	20	3	80
Purdue Northwest	10	3	0	0	0	2	0	0	0	4	0	0	0	6	0	30
Purdue, West Lafayette	30	5	5	4	3	0	0	15	7	0	0	19	10	0	0	65

	st. Degre	es	D St	omestic tudent I	: Graduate Enrollment	e t	Inte St	ernation udent E	al Grad nrollme	uate ent	Total	Gradu Enrol	1ate Stud Iment	ent	Est. Domestic Undergraduate	
University		Grantet	L	F	Т	РТ		F	Т	Р	т	FI	2	РТ	ſ	Enrollment
	U	М	D	м	D	М	D	м	D	М	D	М	D	М	D	%
Rensselaer Polytechnic Inst.	15	5	4	1	3	0	0	2	15	0	0	3	18	0	0	90
Ryerson	80	5	5	10	10	0	0	2	2	0	0	12	12	0	0	98
San Jose State	10	5	0	10	0	5	0	15	0	0	0	25	0	5	0	90
Santa Clara	5	7	1	15	0	6	0	10	0	7	0	25	0	13	0	100
Saskatchewan	30	15	3	4	4	4	0	35	6	5	0	39	10	9	0	90
Seattle	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	80
South Carolina	15	4	3	5	4	4	3	0	12	0	0	5	16	4	3	90
South Dakota State	15	5	1	0	0	0	0	5	1	0	0	5	1	0	0	99
South Dakota, Mines and Tech.	9	0	0	0	0	0	0	2	0	0	0	2	0	0	0	90
South Florida	50	60	5	10	0	10	2	50	12	0	0	60	12	10	2	90
Southern Maine	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	85
St. Thomas	25	10	0	10	0	50	0	17	0	0	0	27	0	50	0	80
Suffolk	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50
Syracuse	6	5	1	2	0	2	1	8	4	2	0	10	4	4	1	90
Temple	15	3	0	4	0	2	1	8	2	4	0	12	2	6	1	90
Tennessee State	3	1	1	0	0	2	1	2	2	5	3	2	2	7	4	66
Tennessee, Chattanooga	30	5	0	0	0	5	0	15	0	0	0	15	0	5	0	95
Tennessee, Knoxville	21	4	13	11	11	0	0	8	61	0	0	19	72	0	0	90
Texas A&M	60	30	10	5	5	0	0	30	35	0	0	35	40	0	0	80
Texas at Arlington	86	2	10	4	9	0	0	2	11	0	1	6	20	0	1	84
Texas at Austin	40	10	4	10	20	0	0	10	2	0	0	20	22	0	0	95
Texas at El Paso	2	3	1	0	0	0	0	0	0	0	0	0	0	0	0	95
Texas at San Antonio	15	5	1	2	0	0	0	6	5	0	0	8	5	0	0	85
Texas Tech	10	5	3	25	10	0	2	25	15	0	0	50	25	0	2	80
Toronto	50	10	5	20	10	10	0	10	5	5	0	30	15	15	0	75
Tufts	4	3	1	2	0	2	0	3	3	3	0	5	3	5	0	75
US Military Academy	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	95
Utah	20	12	0	8	0	0	0	12	10	0	1	20	10	0	1	90
Valparaiso	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	85
Vermont	10	2	2	2	8	0	0	1	1	0	0	3	9	0	0	80
Virginia Polytechnic	22	7	5	18	12	5	2	13	4	0	2	31	16	5	4	80
Washington	30	3	3	3	4	20	0	0	15	0	0	3	19	20	0	65
Washington State	40	1	7	1	0	1	0	8	39	0	0	9	39	1	0	85
Waterloo	30	20	30	40	5	100	0	10	25	0	0	50	30	100	0	90
Wayne State	10	6	2	0	0	0	0	1	7	0	2	1	7	0	2	90
West Florida	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	95
West Virginia	12	4	2	1	0	0	0	6	8	0	0	7	8	0	0	90
West Virginia Inst. of Tech.	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90
Western Carolina	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Western Ontario	20	5	5	1	1	0	0	8	9	0	0	9	10	0	0	90
Wichita State	30	15	5	5	2	5	1	20	10	0	0	25	12	5	1	75
Wisconsin, Madison	82	26	8	42	10	8	3	39	23	0	0	81	33	8	3	80
Wisconsin, Milwaukee	75	5	3	1	0	20	0	17	7	1	2	18	7	21	2	75
Wisconsin, Platteville	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	80
Worcester Polytechnic	10	20	0	2	0	30	0	4	1	0	0	6	1	30	0	90
Wyoming	8	4	2	1	2	0	0	4	4	0	0	5	6	0	0	90

Appendix Table 6. Course Offerings by University

Abbreviations used in Appendix Table 6

Level U: Undergrad; G: Grad

Requirement M: Mandatory; E: Elective

Offered A: Annually; ET: Every Two Years; T: Twice Annually; O: Occasionally; SP: Special

Course TitleFFF <th< th=""><th></th><th></th><th></th><th>nt</th><th>IS</th><th></th><th>E St</th><th>nrolle tuden</th><th>ed ts</th></th<>				nt	IS		E St	nrolle tuden	ed ts
Arizona State University Advanced Power Electronics G A E 3 60 10 70 Computer Simulation of Power Systems G A E 3 20 0 20 Cyber Security and Privacy in the Smart Grid G A E 3 15 0 15 Electric Energy Markets G A E 3 60 8 68 High Power Converters and Drives G A E 3 15 0 15 Opwer System Search Applied to Electric G A E 3 15 0 15 Power System Dynamics G A E 3 150 0 15 Power System Dynamics G A E 3 100 10 130 Power System Dynamics G A E 3 300 8 38 Power System Transients G A E 3 300 0 30 Renewable Electric Energy G A E 3	Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total
Advanced Power ElectronicsGAE3a601070Computer Simulation of Power SystemsGAE3115015Electric Energy MarketsGAE3115015Electric Power QualityGAE3115015Operations Research Applied to ElectricGAE3115015Power System Search Applied to ElectricGAE3115015Power System Operation and ControlGAE3110130Power System TransientsGAE310013Power System TransientsGAE310030737Renewable Electric EnergyGAE31001010Power System TransientsGAE310030301330030Renewable ResourcesGAE3130030	Arizona State U	nive	rsity	,	-	·			
Computer Simulation of Power SystemsGAE3220020Cyber Security and Privacy in the Smart GridGAE3115015Electric Energy MarketsGAE3I15015Electric Power QualityGAE3I15015Operations Research Applied to ElectricGAE3I15015Power System DynamicsGAE3I1015Power System DynamicsGAE3I1010Power System TransientsGAE3I1010Power System TransientsGAE3I30737Renewable Electric EnergyGAE3I30030Transmission and DistributionGAE3I30030Transmission and DistributionGAE3I30030Electric Power PlantsUAE3I30030Electric Power System AnalysisUAE3I30030Electric Power PlantsUAE3I101010Directy System AnalysisUAE3I30030Electric Power Plants <td< td=""><td>Advanced Power Electronics</td><td>G</td><td>А</td><td>Е</td><td>3</td><td></td><td>60</td><td>10</td><td>70</td></td<>	Advanced Power Electronics	G	А	Е	3		60	10	70
Cyber Security and Privacy in the Smart GridGAE3115015Electric Energy MarketsGAE311030Electric Power QualityGAE3115015Operations Research Applied to ElectricGAE3115015Power System DynamicsGAE3110130Power System DynamicsGAE3110130Power System Operation and ControlGAE3130838Power System Stability and ControlGAE3130838Power System TransientsGAE313010130Power System TransientsGAE31301030Transmission and DistributionGAE31301030Electric MachineryUAE3130030Electric Power PlantsUAE3130030Electric Power DavicesUAE3130030Electric Power PlantsUAE3130030Electric Power PlantsUAE311010Dower System AnalysisUT <t< td=""><td>Computer Simulation of Power Systems</td><td>G</td><td>Α</td><td>Е</td><td>3</td><td></td><td>20</td><td>0</td><td>20</td></t<>	Computer Simulation of Power Systems	G	Α	Е	3		20	0	20
Electric Energy Markets G A E 3	Cyber Security and Privacy in the Smart Grid	G	А	Е	3		15	0	15
Electric Power Quality G A E 3 60 8 68 High Power Converters and Drives G A E 3 15 0 15 Operations Research Applied to Electric G A E 3 15 0 15 Power System Dynamics G A E 3 15 0 15 Power System Operation and Control G A E 3 100 130 Power System Transients G A E 3 100 130 Power System Transients G A E 3 300 7 37 Renewable Electric Energy G A E 3 300 0 30 Transmission and Distribution G A E 3 35 0 35 Electric Power Plants U A E 3 30 0 30 Electric Power System Analysis U A E 3 30 0 10 Power Systems and Power Haco	Electric Energy Markets	G	А	Е	3		30	0	30
High Power Converters and Drives G A E 3 15 0 15 Operations Research Applied to Electric G A E 3 15 0 15 Power System Dynamics G A E 3 15 0 15 Power System Dynamics G A E 3 120 10 130 Power System Dynamics G A E 3 30 8 38 Power System Dynamics G A E 3 30 7 37 Renewable Electric Energy G A E 3 30 0 30 Transmission and Distribution G A E 3 30 0 30 Electric Machinery U A E 3 30 0 30 Electric Power Plants U A E 3 30 0 30 Electric Power Devices U A E 3 30 0 30 Electric Power Devices <td>Electric Power Quality</td> <td>G</td> <td>А</td> <td>Е</td> <td>3</td> <td></td> <td>60</td> <td>8</td> <td>68</td>	Electric Power Quality	G	А	Е	3		60	8	68
Operations Research Applied to Electric G A E 3 15 0 15 Power Plant Control and Monitoring G A E 3 15 0 15 Power System Dynamics G A E 3 120 10 130 Power System Operation and Control G A E 3 120 10 130 Power System Transients G A E 3 30 7 37 Renewable Electric Energy G A E 3 30 0 30 Transmission and Distribution G A E 3 30 0 30 Electric Nachinery U A E 3 35 5 40 Electric Power Plants U A E 3 35 5 40 Electric Power Davices U A E 3 30 0 30 Electric Power Davices U A E 3 10 0 10 Senio	High Power Converters and Drives	G	А	Е	3		15	0	15
Power Plant Control and MonitoringGAE3I15015Power System DynamicsGAE3I30838Power System Operation and ControlGAE3I100130Power System Stability and ControlGAE3I30838Power System TransientsGAE3I30737Renewable Electric EnergyGAE3I30030Transmission and DistributionGAE3I60868Electric MachineryUAE3I30030Electric Power PlantsUAE3I30030Electric Power System AnalysisUAE3I30030Electronic Power DevicesUAE3I10010Power Systems and Power IIUTM2Y10010Senior Design Project in Power IUTM2Y10010Power System AnalysisGEE3I15318Power System AnalysisGEE3I15318Power System AnalysisGEE3I15318Power System Operation </td <td>Operations Research Applied to Electric Power Systems</td> <td>G</td> <td>Α</td> <td>Е</td> <td>3</td> <td></td> <td>15</td> <td>0</td> <td>15</td>	Operations Research Applied to Electric Power Systems	G	Α	Е	3		15	0	15
Power System Dynamics G A E 3 30 8 38 Power System Operation and Control G A E 3 120 10 130 Power System Stability and Control G A E 3 30 8 38 Power System Transients G A E 3 30 7 37 Renewable Electric Energy G A E 3 30 0 30 Transmission and Distribution G A E 3 400 8 68 Electric Power Plants U A E 3 35 5 40 Electric Power Plants U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 100 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power I U T M 2 Y 10 <td>Power Plant Control and Monitoring</td> <td>G</td> <td>А</td> <td>Е</td> <td>3</td> <td></td> <td>15</td> <td>0</td> <td>15</td>	Power Plant Control and Monitoring	G	А	Е	3		15	0	15
Power System Operation and Control G A E 3 120 10 130 Power System Stability and Control G A E 3 30 8 38 Power System Transients G A E 3 30 7 37 Renewable Electric Energy G A E 3 30 0 30 Transmission and Distribution G A E 3 60 8 68 Electric Machinery U A E 3 35 5 40 Electric Power Plants U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 100 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power I U T M 2 <	Power System Dynamics	G	А	Е	3		30	8	38
Power System Stability and Control G A E 3 30 8 38 Power System Transients G A E 3 30 7 37 Renewable Electric Energy G A E 3 30 5 35 Renewable Resources G A E 3 400 30 Transmission and Distribution G A E 3 400 8 68 Electric Machinery U A E 3 35 5 40 Electric Power Plants U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power I U T M 2 Y 10 0 10 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power I U T M 2 Y 10 0 </td <td>Power System Operation and Control</td> <td>G</td> <td>А</td> <td>Е</td> <td>3</td> <td></td> <td>120</td> <td>10</td> <td>130</td>	Power System Operation and Control	G	А	Е	3		120	10	130
Power System Transients G A E 3 30 7 37 Renewable Electric Energy G A E 3 30 5 35 Renewable Resources G A E 3 40 30 30 30 Transmission and Distribution G A E 3 400 30 Transmission and Distribution G A E 3 400 30 Electric Machinery U A E 3 35 5 40 Electric Power Plants U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power Management U A E 3 30 0 30 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power I U T M 2 Y 10 0 <	Power System Stability and Control	G	А	Е	3		30	8	38
Renewable Electric Energy G A E 3 30 5 35 Renewable Resources G A E 3 30 0 30 Transmission and Distribution G A E 3 60 8 68 Electric Machinery U A E 3 35 5 40 Electric Power Plants U A E 3 35 5 40 Electric Power Plants U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power Ilectronics U T M 2 Y 10 0 10 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 <t< td=""><td>Power System Transients</td><td>G</td><td>А</td><td>Е</td><td>3</td><td></td><td>30</td><td>7</td><td>37</td></t<>	Power System Transients	G	А	Е	3		30	7	37
Renewable Resources G A E 3 30 0 30 Transmission and Distribution G A E 3 60 8 68 Electric Machinery U A E 3 35 5 40 Electric Power Plants U A E 3 35 5 40 Electric Power System Analysis U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power Management U A E 3 30 0 30 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M <t< td=""><td>Renewable Electric Energy</td><td>G</td><td>А</td><td>Е</td><td>3</td><td></td><td>30</td><td>5</td><td>35</td></t<>	Renewable Electric Energy	G	А	Е	3		30	5	35
Transmission and Distribution G A E 3 60 8 68 Electric Machinery U A E 3 35 0 35 Electric Power Plants U A E 3 35 5 40 Electric Power Plants U A E 3 35 0 35 Electronic Power Devices U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power Management U A E 3 30 0 30 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2<	Renewable Resources	G	А	Е	3		30	0	30
Electric Machinery U A E 3 35 0 35 Electric Power Plants U A E 3 35 5 40 Electric Power System Analysis U A E 3 35 5 40 Electronic Power Devices U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power Management U A E 3 30 0 30 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior System Analysis G ET	Transmission and Distribution	G	А	Е	3		60	8	68
Electric Power Plants U A E 3 35 5 40 Electric Power System Analysis U A E 3 30 0 30 Electronic Power Devices U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power Management U A E 3 30 0 30 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Ower II U T M 2 Y 10 0 12 Power System Analysis G <td>Electric Machinery</td> <td>U</td> <td>А</td> <td>Е</td> <td>3</td> <td></td> <td>35</td> <td>0</td> <td>35</td>	Electric Machinery	U	А	Е	3		35	0	35
Electric Power System Analysis U A E 3 30 0 30 Electronic Power Devices U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power Management U A E 3 30 0 30 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 12 Power System Analysis G ET E 3 15 3 18 Power System Protection G	Electric Power Plants	U	А	Е	3		35	5	40
Electronic Power Devices U A E 3 35 0 35 Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power Management U A E 3 30 0 30 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 12 Power System Analysis G ET E 3 15 2 17 Power System Protecti	Electric Power System Analysis	U	А	Е	3		30	0	30
Energy Systems and Power Electronics U T M 4 Y 160 0 160 Power Systems and Power Management U A E 3 30 0 30 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Auburn University Electric Machines G ET E 3 12 0 12 Power Electronics G ET E 3 15 3 18 Power System Analysis G ET E 3 7 0 7 Power System Operation G ET E 3 15 2 17 Electric Machines U ET E 3 18 0 18 Electric Machines U ET E 3 20 0 20 20 Power System Protection U E	Electronic Power Devices	U	А	Е	3		35	0	35
Power Systems and Power Management U A E 3 30 0 30 Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Auburn University Electric Machines G ET E 3 12 0 12 Power Electronics G ET E 3 15 3 18 Power System Analysis G ET E 3 7 0 7 Power System Operation G ET E 3 15 2 17 Electric Machines U ET E 3 18 0 18 Electric Power Engineering U T M 3 35 0 35 Power System Protection U ET E 3 20 0	Energy Systems and Power Electronics	U	Т	М	4	Y	160	0	160
Senior Design Project in Power I U T M 2 Y 10 0 10 Senior Design Project in Power II U T M 2 Y 10 0 10 Auburn University Electric Machines G ET E 3 12 0 12 0 12 Power Electronics G ET E 3 12 0 12 0 20 <td>Power Systems and Power Management</td> <td>U</td> <td>А</td> <td>Е</td> <td>3</td> <td></td> <td>30</td> <td>0</td> <td>30</td>	Power Systems and Power Management	U	А	Е	3		30	0	30
Senior Design Project in Power II U T M 2 Y 10 0 10 Auburn University Electric Machines G ET E 3 12 0 12 Power Electronics G ET E 3 12 0 12 Power System Analysis G ET E 3 15 3 18 Power System Dynamics and Stability G ET E 3 7 0 7 Power System Operation G ET E 3 18 0 18 Electric Machines U ET E 3 15 2 17 Electric Power Engineering U T M 3 355 0 35 Power System Protection U ET E 3 20 0 20 Power System Protection U ET E 3 25 0 5	Senior Design Project in Power I	U	Т	М	2	Y	10	0	10
Auburn University Electric Machines G ET E 3 12 0 12 Power Electronics G ET E 3 20 0 20 Power Electronics G ET E 3 15 3 18 Power System Dynamics and Stability G ET E 3 7 0 7 Power System Operation G ET E 3 15 2 17 Power System Protection G ET E 3 15 2 17 Electric Machines U ET E 3 18 0 18 Electric Power Engineering U T M 3 35 0 35 Power System Analysis U ET E 3 20 0 20 Power System Protection U ET E 3 25 0 25 Power System	Senior Design Project in Power II	U	Т	М	2	Y	10	0	10
Electric Machines G ET E 3 12 0 12 Power Electronics G ET E 3 20 0 20 Power System Analysis G ET E 3 15 3 18 Power System Dynamics and Stability G ET E 3 7 0 7 Power System Operation G ET E 3 7 2 9 Power System Protection G ET E 3 155 2 17 Electric Machines U ET E 3 155 2 17 Electric Power Engineering U T M 3 355 0 35 Power System Analysis U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Control G	Auburn Univ	ersi	ty						
Power Electronics G E 3 20 0 20 Power System Analysis G ET E 3 15 3 18 Power System Dynamics and Stability G ET E 3 7 0 7 Power System Operation G ET E 3 7 2 9 Power System Protection G ET E 3 15 2 17 Electric Machines U ET E 3 18 0 18 Electric Power Engineering U T M 3 35 0 35 Power System Analysis U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Protection U ET E 3 5 0 5 Power System Control G SP E	Electric Machines	G	ET	Е	3		12	0	12
Power System Analysis G E 3 15 3 18 Power System Dynamics and Stability G ET E 3 7 0 7 Power System Operation G ET E 3 7 2 9 Power System Protection G ET E 3 15 2 17 Electric Machines U ET E 3 15 2 17 Electric Power Engineering U T M 3 35 0 35 Power System Analysis U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Control G SP E 3 5 0 5 Power System Operation G SP E	Power Electronics	G	ET	Е	3		20	0	20
Power System Dynamics and Stability G E I I 7 0 7 Power System Operation G ET E 3 7 2 9 Power System Protection G ET E 3 15 2 17 Electric Machines U ET E 3 15 2 17 Electric Power Engineering U T M 3 35 0 35 Power System Analysis U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Power System Operation G SP	Power System Analysis	G	ET	Е	3		15	3	18
Power System Operation G E 3 7 2 9 Power System Protection G ET E 3 15 2 17 Electric Machines U ET E 3 15 2 17 Electric Machines U ET E 3 18 0 18 Electric Power Engineering U T M 3 35 0 35 Power System Analysis U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Protection U ET E 3 5 0 5 Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Power Quality U A E	Power System Dynamics and Stability	G	ΕT	Е	3		7	0	7
Power System Protection G ET E 3 15 2 17 Electric Machines U ET E 3 18 0 18 Electric Power Engineering U T M 3 35 0 35 Power Electronics U ET E 3 20 0 20 Power System Analysis U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Protection U ET E 3 20 0 20 Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Power System Operation G SP E 3 15 0 15 Power Quality U A E	Power System Operation	G	ΕT	Е	3		7	2	9
Electric Machines U ET E 3 18 0 18 Electric Power Engineering U T M 3 35 0 35 Power Electronics U ET E 3 20 0 20 Power System Analysis U ET E 3 225 0 25 Power System Protection U ET E 3 20 0 20 Baylor University E 3 20 0 20 Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Smart Grid Integration G SP E 3 5 0 5 Power Quality U A E 3 15 0 15 Power Systems U A E 3 15 0	Power System Protection	G	ΕT	Е	3		15	2	17
Electric Power Engineering U T M 3 35 0 35 Power Electronics U ET E 3 20 0 20 Power System Analysis U ET E 3 225 0 25 Power System Protection U ET E 3 20 0 20 Baylor University Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Smart Grid Integration G SP E 3 5 0 5 Power Quality U A E 3 15 0 15 Power Systems U A E 3 15 0 15 Renewable Energy U A E 3 14 0 14	Electric Machines	U	ΕT	Е	3		18	0	18
Power Electronics U ET E 3 20 0 20 Power System Analysis U ET E 3 25 0 25 Power System Protection U ET E 3 20 0 20 Baylor University Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Smart Grid Integration G SP E 3 5 0 5 Power Quality U A E 3 15 0 15 Power Systems U A E 3 15 0 15 Power Systems U A E 3 15 0 15	Electric Power Engineering	U	Т	М	3		35	0	35
Power System Analysis U ET E 3 25 0 25 Power System Protection U ET E 3 20 0 20 Baylor University Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Smart Grid Integration G SP E 3 5 0 5 Power Subtern Control G SP E 3 5 0 5 Smart Grid Integration G SP E 3 5 0 15 Power Quality U A E 3 15 0 15 Power Systems U A E 3 15 0 15 Renewable Energy U A E 3 14 0 14	Power Electronics	U	ET	Е	3		20	0	20
Power System Protection U ET E 3 20 0 20 Baylor University Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Smart Grid Integration G SP E 3 5 0 5 Power Electronics U A E 3 Y 15 0 15 Power Quality U A E 3 155 0 15 Power Systems U A E 3 155 0 15 Renewable Energy U A E 3 14 0 14	Power System Analysis	U	ET	Е	3		25	0	25
Baylor University Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Smart Grid Integration G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Power Electronics U A E 3 Y 15 0 15 Power Quality U A E 3 15 0 15 Power Systems U A E 3 15 0 15 Renewable Energy U A E 3 14 0 14	Power System Protection	U	ET	Е	3		20	0	20
Power System Control G SP E 3 5 0 5 Power System Operation G SP E 3 5 0 5 Smart Grid Integration G SP E 3 5 0 5 Power Sectorics U A E 3 Y 15 0 15 Power Quality U A E 3 15 0 15 Power Systems U A E 3 15 0 15 Renewable Energy U A E 3 15 0 14	Baylor Univ	ersit	у						
Power System Operation G SP E 3 5 0 5 Smart Grid Integration G SP E 3 5 0 5 Power Electronics U A E 3 Y 15 0 15 Power Quality U A E 3 15 0 15 Power Systems U A E 3 15 0 15 Renewable Energy U A E 3 14 0 14	Power System Control	G	SP	Е	3		5	0	5
Smart Grid Integration G SP E 3 5 0 5 Power Electronics U A E 3 Y 15 0 15 Power Quality U A E 3 Y 15 0 15 Power Quality U A E 3 15 0 15 Power Systems U A E 3 15 0 15 Renewable Energy U A E 3 14 0 14	Power System Operation	G	SP	Е	3		5	0	5
Power Electronics U A E 3 Y 15 0 15 Power Quality U A E 3 V 15 0 15 Power Quality U A E 3 V 15 0 15 Power Systems U A E 3 15 0 15 Renewable Energy U A E 3 14 0 14	Smart Grid Integration	G	SP	Е	3		5	0	5
Power Quality U A E 3 15 0 15 Power Systems U A E 3 15 0 15 Renewable Energy U A E 3 14 0 14	Power Electronics	U	А	Е	3	Y	15	0	15
Power Systems U A E 3 15 0 15 Renewable Energy U A E 3 14 0 14	Power Quality	U	А	Е	3		15	0	15
Renewable Energy U A E 3 14 0 14	Power Systems	U	А	Е	3		15	0	15
	Renewable Energy	U	А	Е	3		14	0	14

La	b	
37	V E	ЪT

Y - Yes; Empty - No

			ıt	SI		E St	nrolle tuden	ed ts
Course Title	Level	Offered	Requiremen	Credit Hou	Lab	On-Campus	Distance Ed.	Total
Smart Grid Interface	U	А	Е	3		15	0	15
Boise State Ur	iver	sity	-	-	-		-	
Electric Machines	G	А	Е	3		1	0	1
Power Electronics	G	А	Е	3		7	0	7
Power System Analysis I	G	А	Е	3		5	0	5
Power System Analysis II	G	А	Е	3	Y	0	0	0
Electrical Machines	U	А	Е	3		21	0	21
Power Electronics	U	А	Е	3		32	0	32
Power System Analysis I	U	А	Е	3		24	0	24
Power System Analysis II	U	А	Е	3		17	0	17
Buffalo State U	nive	rsity	,			-		
Operation and Management of Modern Grid	G	А	Е	3		12	0	12
Power Systems Analysis I	G	А	Е	3	Y	1	0	1
Power Systems Analysis II	G	А	Е	3	Y	13	0	13
Renewable Distributed Generation and Storage	G	А	Е	3	Y	0	0	0
Smart Grid from System Perspective	G	SP	Е	3		0	0	0
Electric Machines	U	А	М	3	Y	24	0	24
Operation and Management of Modern Grid	U	А	Е	3		8	0	8
Power Electronics	U	А	М	3	Y	17	0	17
Power Systems I	U	А	М	3	Y	17	0	17
Power Systems II	U	А	М	3	Y	20	0	20
Renewable Distributed Generation and Storage	U	А	Е	3	Y	8	0	8
Smart Grid from Systems Perspective	U	SP	Е	3		3	0	3
California Polytechnic State Un	ivers	sity,	San	Luis	s Ob	ispo	•	
Advanced Analysis of Power Systems (EE 519)	G	ET	Е	4		18	0	18
Advanced Topics in Power Electronics (EE 527)	G	ET	Е	4		32	0	32
Electric Machines Theory (EE 511)	G	ΕT	Ε	4		12	0	12
Power System Protection (EE 518)	G	ΕT	Е	4		24	0	24
Solar-Photovoltaic Systems Design (EE 520)	G	Α	Е	4		32	0	32
Alternating Current Machines (EE 417)	U	А	Е	3		36	0	36
Alternating Current Machines Lab (EE 417) Automotive Engineering for a Sustainable	U	A	Е	1	Y	36	0	36
Future (EE 434) Automotive Engineering for a Sustainable	U	A	Е	3	v	24	0	24
Future Lab (EE 434) Energy Conversion Electromagnetics	U	Т	м	3	1	24 72	0	72
(EE 255) Energy Conversion Electromagnetics	U	T	м	1	Y	72	0	72
Laboratory (EE 295)	T	БŢ	Б	2		26	0	26
Introduction to Magnetic Design (EE 433)	U	ET	E	1	Y	36	0	36
Power Electronics I (EE 410)	U	А	E	3	-	54	0	54
Power Electronics I Lab (EE 410)	U	A	E	1	Y	54	0	54
Power Electronics II (FE 411)	U	Δ	F	3	1	36	0	36
Power Electronics II Lab (EE 411)	U	Δ	F	1	v	36	0	36
i ower Electronics II Edb (EE #11)	U	А	ы	1	1	50	U	50

			Ħ	s		E St	nrolle tuden	ed ts
Course Title	Level	Offered	Requiremer	Credit Hour	Lab	On-Campus	Distance Ed.	Total
Power Systems Analysis I (EE 406)	U	А	Е	3		36	0	36
Power Systems Analysis II (EE 407)	U	А	Е	3		36	0	36
Power Systems Laboratory (EE 444)	U	Т	Е	1	Y	16	0	16
Sustainable Electric Energy Conversion (EE 420)	U	Α	Е	3		36	0	36
Sustainable Electric Energy Conversion Lab (EE 420)	U	A	Е	1	Y	36	0	36
California State Univ	/ersi	ty, F	resn	0				
Advanced Power Electronics	G	SP	E	3		20	0	20
Renewable Energy	G	SP	E	3		20	0	20
Advanced Power Electronics	U	SP	E	3		5	0	5
Electric Machines	U	Α	М	3	Y	35	0	35
Power Electronics	U	ET	E	3		35	0	35
Power Systems	U	ET	Е	3		35	0	35
Relays and Protection	U	ΕT	Е	3		16	0	16
Renewable Energy	U	SP	Е	3		10	0	10
California State Univer	sity,	No	rthri	dge	-	-	-	-
Power Distribution	G	Α	Е	3		15	0	15
Power Electronics	G	Α	Е	3	Y	33	0	33
Power Transmission Lines	G	Α	Е	3		33	0	33
Protective Relaying	G	Α	Е	3		15	0	15
Renewable Energy	G	Α	Е	3		30	0	30
Short Circuit Analysis	G	Α	Е	3		15	0	15
Electrical Machines and Energy Conversion	U	Α	Е	4	Y	33	0	33
Power Electronics	U	Α	Е	3	Y	33	0	33
Power Transmission Lines	U	А	Е	3		33	0	33
California State Univer-	sity,	Sac	ramo	ento				
Advanced Analysis of Faulted Power	G	Δ	м	3		15	0	15
Systems	0	an an	 	2		15	0	15
Advanced Power Systems Protection	G	SP	E	3		15	0	15
Advanced Topics in Power Systems	G	SP	Е	3		15	0	15
Control and Stability of Power Systems	G	Α	Е	3		15	0	15
Future Power Systems and Smart Grids	G	Α	Е	3		15	0	15
Large Interconnected Power Systems	G	Α	E	3		15	0	15
Power System Economics and Dispatch	G	Α	E	3		15	0	15
Power System Reliability and Planning	G	SP	Е	3		15	0	15
Wind Energy Electrical Conversion Systems	G	А	Е	3		15	0	15
Electric Power Distribution	U	Т	Е	3		35	0	35
Electrical Power Design Project I	U	Т	М	2		35	0	35
Electrical Power Design Project II	U	Т	М	2		35	0	35
Electromechanical Conversion	U	Т	М	3		35	0	35
Electromechanics Laboratory	U	Т	Е	1	Y	15	0	15
Energy Systems Control and Optimization	U	Т	М	3		35	0	35
Power Electronics Controlled Drives	U	Α	Е	3		35	0	35
Power Electronics Laboratory	U	Α	Е	1	Y	15	0	15
Power System Analysis	U	Т	М	3		35	0	35
Power System Laboratory	U	Т	М	1	Y	15	0	15
Power System Operation and Control Laboratory	U	SP	E	1	Y	15	0	15
Power System Relay Protection and Laboratory	U	A	E	4	Y	35	0	35
Renewable Electrical Energy Sources and Grid Integration	U	A	Е	3		35	0	35
Smart Electric Power Grid	U	Α	Е	3		35	0	35
Carnegie Mellon	Univ	versi	ty					
Introduction to Solar Arrays: Modeling, Analysis and Design	G	ET	Е	12	Y	5	0	5
Large Scale Dynamic Systems	G	ΕT	Е	12		20	0	20
Optimization in Electric Energy Systems	G	А	Е	12		20	0	20
Power Electronics for Electric Power Systems	G	ET	E	12		10	0	10

			nt	rs		E St	nrolle tuden	d ts
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total
Smart Grids and Future Electric Energy Systems	G	А	Е	12		20	0	20
Computational Methods in Smart Grids	U	А	Е	12		18	0	18
Electric Energy Processing: Fundamentals and Applications	U	ET	Е	12		20	0	20
Electrical Energy Conversion, Control and Management (canstone course)	U	А	Е	12	Y	10	0	10
Fundamentals in Electric Power Systems	U	А	Е	12		20	0	20
Case Western Reserv	ve U	nive	rsity	,				
Distribution System Analysis	G	ΕT	E	3		5	0	5
Power System Analysis I	G	А	Е	3		17	0	17
Power System Analysis II	G	А	Е	3		7	0	7
Relay Protection	G	ET	Е	3		5	0	5
Smart Grid	G	ΕT	Е	3		10	0	10
Distribution System Analysis	U	ΕT	Е	3		5	0	5
Power System Analysis I	U	А	Е	3		17	0	17
Power System Analysis II	U	А	Е	3		7	0	7
Relay Protection	U	ET	Е	3		5	0	5
Smart Grid	U	ET	Е	3		10	0	10
Clarkson Univ	versi	ity						
Advanced Electric Machines and Drives	G	ĒT	Е	3		5	1	6
Alternate Energy Systems	G	А	Е	3		2	1	3
Deregulated Power Systems	G	ET	Е	3		9	0	9
Dielectrics	G	ЕT	Е	3		7	0	7
High Voltage Techniques and Measurements	G	ET	E	3		5	2	7
Power System Planning	G	EТ	Е	3		6	2	8
Power System Protection	G	ET	Е	3		5	5	10
Alternate Energy Systems	U	А	Е	3		33	0	33
Dielectrics	U	ET	Е	3		28	0	28
Energy Conversion	U	А	М	3		60	0	60
High Voltage Techniques and Measurements	U	ET	Е	3		21	0	21
Power Systems Engineering	U	А	Е	3		33	0	33
Power Transmission and Distribution	U	А	Е	3		23	0	23
Clemson Univ	versi	ty						
Electric Machines and Drives	G	A	Е	3		42	5	47
Electric Motor Control	G	ET	Е	3		10	0	10
Electric Machines and Drives	U	А	Е	3		1	0	1
Electric Power Engineering	U	Т	М	3		50	0	50
Power System Analysis	U	А	Е	3		25	0	25
Cleveland State U	Jniv	ersit	v					
Power Electronics and Electric Machines	G	А	E	4		25	0	25
Power Electronics II	G	А	М	4		50	0	50
Power Systems	G	А	М	4		50	0	50
Power Systems Control	G	ET	Е	4		25	0	25
Power Systems Operations	G	А	Е	4		25	0	25
Electro-Mechanical Energy Conversion	U	А	М	3		55	0	55
Power Electronics	U	А	М	3	Y	55	0	55
Colorado School	of N	Aine	s					
Advanced Electrical Machine Dynamics	G	ET	Е	3		20	0	20
Advanced High Power Electronics	G	ΕT	Е	3		20	0	20
Communication Networks for Power Systems	G	ET	Е	3		10	0	10
Design and Control of Wind Energy System	G	ΕT	Е	3		20	0	20
Power Distribution Systems Engineering	G	ΕT	Е	3		20	0	20
Power Quality	G	ΕT	Е	3		10	0	10
Power System Operation and Management	G	ΕT	Е	3		10	0	10
Power System Risk Management	G	ET	Е	3		10	0	10
Renewable Energy and Distributed	G	EТ	Е	3		10	0	10
Generation	l							-

			Ħ	s		E S	nrolle tuden	ed ts
Course Title	Level	Offered	Requiremen	Credit Hou	Lab	On-Campus	Distance Ed.	Total
Analysis & Design of Advanced Energy	U	ET	Е	3	Y	10	0	10
Computational Methods in Energy Systems	U	А	Е	3	Y	10	0	10
and Power Fundamentals of Electric Machinery	т П	т	— М	4	v	30	0	30
Introduction to High Power Electronics	U	A	E	3	-	20	0	20
Power System Analysis	U	A	E	3		20	0	20
Colorado State U	Jniv	ersit	y					1
Electric Power Engineering	G	А	Е	3		20	10	30
Electric Power Quality	G	ΕT	Е	3		10	5	15
Grid Integration of Wind Energy Systems	G	ΕT	Е	3		10	5	15
Introduction to Electric Power Markets	G	ΕT	Е	3		20	5	25
Power Electronics I	G	SP	Е	3		15	0	15
Signal Processing for Power Systems -1	G	А	Е	3		10	0	10
Signal Processing for Power Systems -2	G	ΕT	Е	3		5	2	7
Electrical Energy Generation Technologies	U	А	Е	3		20	0	20
Power Systems I	U	А	Е	3	Y	25	0	25
Concordia Un	ivers	ity	-		-	-	-	-
Controlled Electric Drives	G	А	Е	4	Y	47	0	47
Power Electronics I	G	А	М	4	Y	65	0	65
Power Electronics II	G	А	Е	4	Y	40	0	40
Control of Electrical Power Conversion Systems	U	А	М	4	Y	15	0	15
Electrical Engineering Project	U	Т	М	4	Y	25	0	25
Electrical Power Equipment	U	А	Е	4	Y	10	0	10
Electrical Power Systems	U	А	М	4	Y	15	0	15
Fundamentals of Electrical Power	U	А	М	4	Y	20	0	20
Power Electronics	U	А	Е	4	Y	25	0	25
Cornell Univ	ersi	ty		-				
Advanced Power Systems	G	ΕT	Е	4		20	0	20
Advanced Power Systems	U	А	Е	4		40	0	40
Power Systems I	U	А	Е	4		40	0	40
Drexel Univ	ersit	у			1	1		1
AC-DC/DC-AC Power Electrical Conversion	G	Α	Е	3	Y	12	0	12
Computer Analysis of Power Systems	G	Α	Е	3		15	0	15
Economic Operation of Power Systems	G	Α	E	3		0	13	13
Systems	G	ΕT	Е	3	Y	20	0	20
Power Distribution Automation and Control	G	ΕT	Е	3	Y	20	0	20
Power Electronic Applications	G	ΕT	Е	3	Y	4	0	4
Power Electronic Experiments	G	А	E	3	Y	9	0	9
Power System Analysis	G	А	E	3		17	8	25
Power System Dynamic Security	G	A	E	3		0	2	2
Power System Dynamics	G	A	E	3		0	13	13
Protective Relaying	G	A	E	3	Y	8	0	8
Protective Relaying Laboratory Service and Power Quality in Distribution	G	A	Е	3	Y	8	0	8
Systems	G	ΕT	Е	3	Y	16	0	16
Solid State Protective Relaying	G	А	Е	3	Y	13	0	13
Synchronous Machine Modeling	G	А	Е	3		13	0	13
Applications of Power Electronic Converters	U	ΕT	Е	3	Y	0	0	0
Electric Motor Control Principles	U	Т	М	4	Y	71	0	71
Energy Management Principles	U	Т	Е	4	Y	39	0	39
Experimental Study of Power Electronic Converters	U	ΕT	Е	3	Y	6	0	6
Introduction to Renewable Energy	U	Т	Е	3		0	64	64
Modeling and Analysis of Electric Power Distribution Systems	U	ET	Е	3	Y	15	0	15
Power Distribution Automation and Control	U	ET	Е	3	Y	15	0	15
Power Electronic Converter Fundamentals	U	ET	Е	3	Y	11	0	11

			t	s		Enrolled Students			
Course Title	Level	Offered	Requiremen	Credit Hour	Lab	On-Campus	Distance Ed.	Total	
Power Systems I	U	А	М	3		45	0	45	
Power Systems II	U	А	М	4	Y	38	0	38	
Power Systems III	U	А	М	3		18	0	18	
Protective Relay Laboratory	U	А	Е	3	Y	5	0	5	
Protective Relaying	U	А	Е	3	Y	5	0	5	
Service and Power Quality Distribution Systems	U	A	Е	3	Y	14	0	14	
Solar Energy Engineering	U	Α	E	3		0	32	32	
Solid State Protective Relaying	U	A	E	3	Y	4	0	4	
FAMU-FSU College	of E	ngin	eerii	ng	_				
Electrical Machine Design	G	SP	E	3		8	0	8	
Electromechanical Dynamics	G	ET	Е	3		30	0	30	
Integration of Distributed Generation	G	ET	E	3		12	0	12	
Introduction to Energy Storage	G	A	E	3		25	3	28	
Power Conversion and Control	G	ΕT	E	3		15	0	15	
Power Electronics	G	Α	E	3		20	0	20	
Power Systems Analysis	G	Α	E	3		15	0	15	
Power Systems Transients	G	ΕT	Е	3		10	0	10	
Protective Relaying	G	SP	Е	3		8	0	8	
Renewable Energy I	G	ΕT	Е	3		15	0	15	
Superconducting Power Apparatus	G	SP	Е	3		5	0	5	
Converter Modeling and Control	U	Α	Е	3		20	0	20	
Electrical Machine Design	U	ΕT	Е	3		8	0	8	
Electromechanical Dynamics	U	А	Е	3		30	0	30	
Fundamentals of Power Systems	U	А	Е	3		50	0	50	
Integration of Distributed Generation	U	ΕT	Е	3		12	0	12	
Introduction to Energy Storage	U	А	Е	3		30	5	35	
Power Conversion and Control	U	ΕT	Е	3		30	0	30	
Power Electronics	U	А	Е	3		50	0	50	
Power Systems Analysis	U	А	Е	3		30	0	30	
Power Systems I	U	А	Е	3		15	0	15	
Power Systems Lab	U	А	Е	1	Y	30	0	30	
Power Systems Transients	U	SP	Е	3		10	0	10	
Renewable Energy I	U	ΕT	Е	3		15	0	15	
Superconducting Power Devices	U	ΕT	Е	3		6	0	6	
Florida Internationa	l Ur	niver	sity						
Electric Drives	G	ET	Е	3		20	5	25	
Electric Transients in Power Systems	G	ΕT	Е	3		15	5	20	
Intelligent Systems Application	G	ET	Е	3		20	5	25	
Power Quality	G	ET	Е	3		20	5	25	
Power System Engineering	G	ΕT	Е	3		20	5	25	
Power System Protection	G	ΕT	Е	3		20	5	25	
Power System Stability and Control	G	ΕT	Е	3		20	5	25	
Power Systems Reliability	G	ΕT	Е	3		20	5	25	
Renewable Energy Utilization	G	А	Е	3	Y	25	5	30	
Power Electronics (EEL4241)	U	ET	Е	3	Y	25	5	30	
Power Systems I (EEL4213)	U	Т	М	3	Y	70	15	85	
Power Systems II (EEL4214)	U	А	Е	3		45	5	50	
Power Systems III (EEL4215)	U	А	Е	3		45	5	50	
Gannon Univ	ersi	ty	ļ	I					
Electric Machine Design	G	Α	Е	3		7	0	7	
Integrating Renewable Energy Into Electrical	G	Δ	Б	3		20	0	20	
Power Systems	9	л	-	2	_	20	0	- 20	
Modelling and Analysis of Electric Drives	G	Α	E	3	_	7	0	-7	
Power Systems	U	Α	E	3		0	0	0	
Intro to Electric Drives	U	А	М	3	Y	17	0	17	
Power System Analysis	U	А	Е	3		5	0	5	
	_	_	_	_	_				

			nent	LS		Enrolled Students			
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Georgia Institute of	Tec	hnol	ogy			-	-	-	
Dynamics and Control of Electric Machine Drives	G	ΕT	Е	3		25	10	35	
Electric Machinery Analysis	G	ΕT	Е	3		25	10	35	
Electric Power Quality	G	ΕT	Е	3		25	0	25	
Power Electronic Circuits	G	ΕT	Е	3		25	10	35	
Power Electronics CAD Laboratory	G	ΕT	Е	1		25	0	25	
Power System Planning and Reliability	G	ΕT	Е	3		25	10	35	
Power System Stability	G	ΕT	Е	3		25	10	35	
Power Systems Control and Operation	G	Α	Е	3		25	10	35	
Electric Energy Systems	U	Т	М	3	Y	250	0	250	
Electric Machinery Analysis	U	ΕT	Е	3		10	0	10	
Electric Power Quality	U	ΕT	Е	3		25	0	25	
Electromechanical and Electromagnetic Energy Conversion	U	Т	Е	3		35	0	35	
Power Electronics	U	А	Е	3		30	0	30	
Power System Analysis & Control	U	А	Е	3		25	0	25	
Power System Engineering	U	А	Е	3		30	0	30	
Gonzaga Univ	/ersi	ty				-			
Electrical Distribution System Design	G	А	М	3		0	11	11	
Electrical Grid Operations	G	А	М	3		0	12	12	
Engineering Leadership	G	А	М	3	Y	0	11	11	
Power System Analysis	G	А	М	3		0	13	13	
Project Development and Construction Methods	G	А	М	3		0	9	9	
Substation Design	G	Т	М	3		0	9	9	
System Automation	G	А	М	3		0	11	11	
System Protection	G	А	М	3		0	9	9	
Transmission Line Design - Advanced	G	А	Е	3		0	9	9	
Transmission Line Design - Electrical	G	А	М	3		0	9	9	
Aspects Transmission Line Design - Introduction	G	А	м	3		0	6	6	
Transmission Line Design - Structures	G	SP	E	3		0	11	11	
Underground System Design	G	A	М	3		0	11	11	
Utility Communications	G	А	Е	3		0	9	9	
Electric Power Distribution System	П	Δ	F	3		6	0	6	
Engineering	U		L M	4	v	20	0	20	
Introduction to Electric Power Engineering	U	A	M	4	r	28	0	28	
Power Systems Analysis	U	A SD	Е	3		10	0	10	
Special Topics - Protective Relaying	orei	5r	Е	3		0	0	0	
Computer and Safety Critical System	G	Ly A	м	3	v	8	0	8	
Energy Processing and Smart Grid	G	A	M	3	Y	4	0	4	
Optimization Theory and Application	G	A	м	3		4	0	4	
Power Communication and Control	G	A	М	3	Y	5	0	5	
Energy Conversion	U	А	М	5	Y	14	0	14	
Energy Processing and Smart Grid	U	А	Е	3	Y	4	0	4	
Power Communication and Control	U	А	Е	3	Y	5	0	5	
Power Electronics	U	А	Е	3	Y	5	0	5	
Power System Analysis	U	А	Е	3	Y	5	0	5	
Illinois Institute of	Tecl	nol	ogy						
Control and Operation of Electric Power	G	EТ	Е	3		38	18	56	
oystems Deregulated Power Systems	Ģ	EТ	F	3	-	27	18	45	
Elements of Sustainable Energy	G	ET	F	3	-	28	9	37	
Fault-Tolerant Power Systems	G	ET	Ē	3	-	18	13	31	
Microgrid Design and Operation	G	ET	Ē	3	-	29	0	29	
Power Market Economics and Security	G	ET	E	3	-	29	4	33	
Power Market Operations	G	ET	E	3		41	12	53	
Power System Planning	G	ΕT	Е	3		36	18	54	

			nt	rs		Enrolled Students			
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Power System Reliability	G	EТ	Е	3		23	6	29	
Power System Transaction Management	G	ΕT	Е	3		21	9	30	
Analytical Methods in Power Systems	U	А	Е	3		20	7	27	
Fundamentals of Power Engineering	U	Т	М	4	Y	29	0	29	
Power System Analysis	U	А	Е	4	Y	32	7	39	
Indiana University - Purdue U	Jnive	ersit	y Inc	liana	apoli	s		-	
Advanced Power Electronics Converters	G	А	Е	3		20	0	20	
Computational Methods for Power System Analysis	G	А	Е	3		17	0	17	
Energy Conversion	G	А	Е	3		20	0	20	
Smart Grid	G	А	Е	3		24	0	24	
Electromechanical Motion Devices	U	А	Е	3		25	0	25	
Elements of Power System Engineering	U	А	Е	3		22	0	22	
Power Electronics	U	А	Е	3		30	0	30	
Iowa State Un	ivers	ity							
Electromechanical Wind Energy Conversion and Grid Integration	G	EТ	Е	3		20	13	33	
Energy System Planning	G	SP	Е	3		18	12	30	
Power System Dynamics	G	ET	М	3		11	0	11	
Seminar in Electric Power	G	Т	М	1		30	0	30	
Steady State Analysis	G	ET	М	3		17	0	17	
Wind Energy Resources	G	SP	Е	3		15	0	15	
Wind Energy Systems Seminar	G	SP	Е	3		25	0	25	
Economic Systems for Electric Power	U	ЕT	Е	3		25	0	25	
Planning Electrical Machines and Power Electronic Drives	U	A	E	3	Y	31	0	31	
Electromechanical Wind Energy Conversion	U	EТ	Е	3		20	13	33	
and Grid integration	П	т	м	3		77	0	77	
Introduction to Energy Distribution Systems	U	Δ	F	3		33	0	33	
Power System Analysis I	U	Δ	F	3		48	0	48	
Power System Analysis I	U	A	E	3		45	0	45	
Iohn Brown U	niver	sitv	2	5		10	•	10	
Power Electronics	U	ET	Е	3	Y	25	0	25	
Power Systems	U	EТ	Е	3		28	0	28	
Kansas State U	niver	rsity							
Advanced Power Electronics	G	SP	Е	3		12	12	24	
Distribution System Engineering	G	SP	Е	3		11	16	27	
Power Quality	G	SP	Е	3		9	0	9	
Power System Stability	G	SP	Е	3		9	27	36	
Energy Conversion	U	Т	М	3		18	0	18	
Power Electronics	U	А	Е	3		28	15	43	
Power Lab	U	А	М	3	Y	28	0	28	
Power System Design	U	А	М	3		33	0	33	
Power System Protection	U	А	Е	3		25	0	25	
Wind and Solar Energy	U	А	Е	3	Y	17	11	28	
Kennesaw State	Univ	ersit	y						
Electric Drives	U	А	Е	3	Y	16	0	16	
Electric Machines	U	Т	М	4	Y	36	0	36	
Electric Power Systems	U	ΕT	Е	3		18	0	18	
Power Electronics	U	А	Е	3	Y	20	0	20	
Lake Superior State	e Un	iver	sity						
Electro-Mechanical Systems	U	ΕT	М	4	Y	8	0	8	
Energy Systems & Sustainability	U	ΕT	Е	4	Y	10	0	10	
Power Distribution/Transmission	U	ΕT	Е	3		6	0	6	
Power Electronics	U	Α	М	4	Y	6	0	6	
Vehicle Energy Systems	U	ΕT	Е	3	Y	8	0	8	

		pe	at	rs		Enrolled Students			
Course Title	Level	Offered	Requiremen	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Lamar Univ	ersit	у							
Electric Machines and Power Electronic	G	А	Е	3	Y	20	15	35	
Electric System Modeling	G	А	Е	3		0	20	20	
Power Electronics	G	А	Е	3		20	10	30	
Power System Monitoring and Protection	G	А	Е	3		10	15	25	
Power System Stability and Control	G	А	Е	3		15	15	30	
Renewable Energy Generation	G	А	Е	3		10	20	30	
Electric Machines and Power Electronic	U	А	Е	3	Y	20	15	35	
Electric System Modeling	U	А	Е	3		0	20	20	
Fundamentals of Power Engineering	U	А	М	4	Y	20	20	40	
Power Electronics	U	А	Е	3		15	10	25	
Power System Monitoring and Protection	U	А	Е	3		10	10	20	
Power System Stability and Control	U	А	Е	3		20	10	30	
Lawrence Technologi	ical	Univ	ersi	ty					
Power Electronics	G	А	Е	4	Y	5	0	5	
Power Systems Analysis	G	А	Е	4		8	0	8	
Electrical Machinery	U	А	М	3		6	0	6	
Electrical Machinery Lab	U	А	М	1	Y	6	0	6	
Introduction to Electrical Systems	U	А	М	3		6	0	6	
Introduction to Electrical Systems Lab	U	А	Μ	1	Y	6	0	6	
Power Electronics	U	А	Е	3	Y	10	0	10	
Louisiana State University	and	A&	MO	Colle	ge	1		1	
Advanced Compensator Design	G	А	Е	3		7	0	7	
Advanced Electric Drives	G	А	Е	3		12	0	12	
Advanced Electric Machines	G	А	Е	3		3	0	3	
Advanced Power System Protection	G	Α	Е	3		9	0	9	
Dynamics of Microgrids	G	ΕT	Е	3		8	0	8	
Harmonics in Power Systems	G	Α	E	3		10	0	10	
Power System Intelligent Control	G	ET	E	3		5	0	5	
Power Systems Operation and Optimization	G	SP	E	3		7	0	7	
Sensorless Drives	G	SP	E	3	\$7	15	0	15	
Adjustable Speed Drives	U	A	E	3	Y	14	0	14	
Electric Machine Design	U	A	E	3	Y	22	0	22	
Harmonic Filter Design with Lab	U	А	Е	3	r	20	0	20	
Madeling & Analysis of Smort Douge System	U	I ET	E	2		12	0	12	
Power Electronics	U		E	2	v	26	0	12	
Power System Modeling and Analysis With		A	E	5	1	20	0	20	
Lab	U	ET	Е	3	Y	33	0	33	
Power System Operations & Control	U	Α	E	3	Y	33	0	33	
Power System Protection With Lab	U	A	E	3	Y	24	0	24	
Power System Reliability	U	A	Е	3		40	0	40	
Marquette Un Design and Analysis of Electric Motor Drive	ivers	sity	1	-	r –		1	-	
Systems	G	Α	Е	3		25	0	25	
Developments in Energy and Power	G	SP	Е	3		3	0	3	
Electric Energy Systems Analysis	G	ΕT	Е	3		15	0	15	
Power Electronics	G	А	Е	3	Y	25	0	25	
Protection and Monitoring of Electric Energy Systems	G	ΕT	Е	3		15	0	15	
Transients in Electric Energy Systems	G	ΕT	Е	3		15	0	15	
Electric Drives	U	А	М	3		60	0	60	
Massachusetts Institute	of '	Tech	nolo	ogy					
Advanced Topics in Power Electronics	G	SP	Е	12	Y	30	0	30	
Electric Machines	G	ΕT	Е	12		15	0	15	
Engineering Economics and Regulation of the Electric Power Sector	G	SP	Е	12		10	0	10	
Intro to Electric Power Systems	G	А	Е	12		10	0	10	

			nt	rs		Enrolled Students			
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Power Electronics	G	А	Е	12		65	0	65	
Introduction to Electric Power Systems	U	А	Е	12		10	0	10	
Power Electronics Laboratory	U	А	Е	12	Y	30	0	30	
McGill Univ	ersit	y							
Flexible AC Transmission Systems	G	ΕT	Е	3		15	0	15	
Introduction to Power Electronics	G	А	Е	3		15	0	15	
Power System Operation and Planning	G	А	Е	3		20	0	20	
Distribution Networks	U	Α	Е	3	Y	5	0	5	
Electric Power Generation	U	Α	Е	3	Y	15	0	15	
Electromechanical Energy Conversion	U	Α	Е	3		15	0	15	
Industrial Power Systems	U	A	E	3	Y	5	0	5	
Power Electronic Systems	U	A _	E	3		10	0	10	
Power Engineering	U	Т	M	3		150	0	150	
Power Laboratory	U	A	E	2	Y	30	0	30	
Power System Analysis	U	A	E	3	v	25	0	25	
Power System Apparatus	U	A	E	2	Y V	5	0	5	
Power System Protection	U	A	E	2	ı v	5	0	5	
Memorial University of	E No	A	ndl	and	1	5	0	5	
Advanced Electric Machines	G	FT	F	3		5	0	5	
Advanced Power Electronics	G	Δ	E	3	v	5	0	5	
Renewable Energy Systems	G	A	E	3	Y	15	0	15	
Electro Mechanical Devices	U	A	м	3	Y	26	0	26	
Power Electronics	U	A	E	3	Y	10	0	10	
Power System Analysis	Ū	A	E	3	Y	20	0	20	
Power System Operation	U	А	Е	3	Y	8	0	8	
Renewable Energy	U	А	Е	3	Y	20	0	20	
Rotating Machines	U	А	М	3	Y	26	0	26	
Miami Unive	ersit	y							
Electric Machinery and Drives	G	А	Е	3	Y	2	0	2	
Power Electronics	G	А	Е	3		6	0	6	
Power Systems Engineering	G	А	Е	3		8	0	8	
Electric Machinery and Drives	U	ΕT	Е	3		20	0	20	
Energy Systems Engineering	U	А	Е	3		20	0	20	
Power Electronics	U	А	Е	3	Y	30	0	30	
Power Systems Engineering	U	ΕT	Е	3		33	0	33	
Michigan State U	Jniv	ersit	y						
AC Machines Design	G	ΕT	Е	3		6	0	6	
Advanced Power Electronics	G	Α	Μ	3		16	0	16	
Control of AC Machines	G	ΕT	Е	3		7	0	7	
Power System Reliability	G	ET	E	3		10	0	10	
Power System Stability and Control	G	ET	E	3		10	0	10	
Energy Conversion / Power Electronics	U	Т	M	3		40	0	40	
Power Laboratory	U	A	E	1	Y	14	0	14	
Power Systems Analysis	U	A	E	3		40	0	40	
Solid State Power Conversion	0	A	E	3		15	0	15	
Michigan Technologi	call	Jniv	ersit	y 2		10	10	20	
Advanced Methods in Power System	G	ET	E	5		18	12	30	
Analysis	G	Α	Е	3		40	5	45	
Advanced Power Electronics	G	ΕT	Е	3		16	9	25	
Advanced Propulsion Sys for Hybrid Electric Vehicles	G	А	Е	3		37	0	37	
Advanced Propulsion Systems for Hybrid	G	А	E	1	Y	15	0	15	
Electric Vehicles Lab	C	БТ	F	2	-	42	0	42	
Distribution Engineering	G	4	E	2	-	42	11	42 52	
Introduction to Energy Storage Systems	G	Δ	F	2		41	0	47	
massageton to Energy Storage Systems	5	"	-	5		71	5	77	

			nt	rs		Enrolled Students			
Course Title	Level	Offered	Requiremen	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Power System Dynamics	G	SP	Е	3		24	0	24	
Power System Operations	G	А	Е	3		48	6	54	
Power System Optimization	G	ΕT	Е	3		9	0	9	
Power System Protection	G	ΕT	Е	3		76	18	94	
Power System Protection Lab	G	ΕT	Е	1	Y	55	0	55	
Solar Photovoltaic Technology	G	А	Е	3		21	0	21	
Transient Analysis Methods	G	ΕT	Е	3		45	13	58	
Wind Power	G	SP	Е	3		56	21	77	
Electric Energy Systems	U	Т	М	3		100	7	107	
Intro to Propulsion Systems for Hybrid Electric Vehicles	U	А	Е	3		45	0	45	
Intro to Propulsion Systems for Hybrid Electric Vehicles Lab	U	А	Е	1	Y	12	0	12	
Introduction to Electric Machines & Drives	U	А	Е	3		50	10	60	
Introduction to Electric Machines & Drives	U	А	Е	1	Y	26	0	26	
Lab Power Electronics	II	Δ	F	3		50	6	56	
Power Electronics Lab	U	Δ	E	1	v	19	0	19	
Power Engineering Laboratory	U	т	E	1	Y	20	0	20	
Power System Analysis 1	U	A	E	3		48	12	60	
Power System Analysis 2	U	А	Е	3		23	10	33	
Minnesota State Unive	ersit	y, M	anka	ato	L				
Electrical Power Systems Analysis and Design	G	SP	Е	3		10	0	10	
Power Electronics	G	SP	Е	4	Y	10	0	10	
Electrical Power Systems	U	А	М	3	Y	15	0	15	
Electrical Power Systems Analysis and Design	U	SP	Е	3		20	0	20	
Power Electronics	U	SP	Е	4	Y	15	0	15	
Power Electronics	U	А	Е	3	Y	10	0	10	
Mississippi State	Uni	versi	ty		·				
Feedback Control Systems I	G	А	Е	3		6	0	6	
Fundamentals of High Voltage Engineering	G	А	Е	3	Y	5	0	5	
Insulation Coordination in Electrical Power	G	А	Е	3	Y	0	0	0	
Introduction to Power Electronics	G	А	Е	3		0	0	0	
Power Distribution Systems	G	А	Е	3		7	2	9	
Power System Stability and Control	G	ΕT	Е	3		16	0	16	
Power Systems Operation and Control	G	ΕT	Е	3		0	0	0	
Power Transmission Systems	G	А	Е	3		6	0	6	
Smart Grid	G	SP	Е	3		0	0	0	
Advanced Electronic Circuits	U	А	Е	3		29	0	29	
Feedback in Control Systems I	U	А	Е	3		4	0	4	
Fundamentals of Energy Systems	U	А	М	4	Y	20	0	20	
Fundaments of High Voltage Engineering	U	Α	Е	3	Y	17	0	17	
Insulation Coordination in Electric Power Systems	U	Α	Е	3	Y	0	0	0	
Intro to Power Electronics	U	А	Е	3		7	0	7	
Power Distribution Systems	U	А	Е	3		26	2	28	
Power Transmission Systems	U	Α	E	3		28	0	28	
Missouri University of Scie	nce	and	Tecl	nnol	ogy	r	r		
Advanced Electric Drive Vehicles	G	ΕT	Е	3		18	3	21	
Advanced Power Electronics	G	Т	E	3		25	0	25	
Advanced Theory of Electric Machines Computer Methods in Power System	G	ET	E	3		10	4	14	
Analysis	G	Бľ	Е	3	_	14	U	14	
Power Converter Modeling and Design	G	Т	Е	3		21	0	21	
Power System Operations	G	ET	E	3	_	16	5	21	
Power System Protection	G	ET	E	3		12	5	17	
Power System Reliability	G	ET ET	Ē	3		15	6	21	
Power System Stability	G	ΕT	E	3		14	0	14	

			ent urs	rs		Enrolled Students			
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Surge Phenomena in Power Systems	G	ET	Е	3		10	4	14	
Electric Drive Systems	U	А	Е	3		35	0	35	
Electric Drive Vehicles	U	А	Е	3		35	0	35	
Electric Power Quality	U	А	Е	3		50	3	53	
Electromechanics	U	Т	М	3	Y	50	0	50	
Power Electronics	U	А	Е	3		50	0	50	
Power Electronics Laboratory	U	А	Е	2	Y	15	0	15	
Power System Design and Analysis	U	Т	М	3	Y	50	0	50	
Montana State Univer	sity,	Boz	zema	an					
Advance Power Electronics	G	ET	Е	3		5	0	5	
Alternative Energy Distributed Power Generation	G	ET	Е	3		3	0	3	
Power System Dynamics	G	SP	Е	3		4	0	4	
Alternative Energy Power Generation	U	ET	Е	3		8	0	8	
Electromechanical Energy Conversion and	U	А	м	4	Y	35	0	35	
Drives	- U	БТ	E	2	v	5	0	5	
Power Electronics	U		E	2	I V	3	0	3	
New Jersey Institute	of Te	echn		v	1	14	0	14	
Economic Control of Interconnected Power	G	A	м	3		39	0	39	
Systems Power Electronics	G	A	E	3		27	0	27	
Power System Steady State Analysis	G	А	М	3		37	0	37	
Protection of Power Systems	G	А	Е	3		16	0	16	
Renewable Energy Systems	G	А	Е	3		35	0	35	
Transients in Power Systems	G	А	М	3		41	21	62	
Electrical Engineering Lab III	U	Т	М	3	Y	30	0	30	
Energy Conversion	U	Т	М	3		50	0	50	
Power Systems E	U	А	Е	3		15	0	15	
Power Systems Lab	U	А	Е	2	Y	15	0	15	
Renewable Energy Systems	U	А	Е	3		15	0	15	
New Mexico State	Uni	ivers	ity						
Dynamics of Power System	G	ΕT	Е	3		5	2	7	
Introduction to Smart Grid	G	А	Е	3		7	0	7	
Power Distribution Systems	G	А	Е	3		10	8	18	
Power Electronics	G	ET	Е	3		10	0	10	
Power System Modeling and Computational Methods	G	ET	Е	3		5	2	7	
Power System Relaying	G	А	Е	3	Y	6	3	9	
Power Systems II	G	А	М	3		10	15	25	
Power Systems III	G	А	М	3		10	8	18	
Introduction to Electric Power System	U	Т	М	4	Y	35	0	35	
Power Distribution Systems	U	А	Е	3		5	0	5	
Power Electronics	U	ET	Е	3	Y	5	0	5	
Power Systems II	U	А	Е	3		28	0	28	
Power Systems III	U	A	E	3		25	0	25	
New York University Polytechn	IC So	choo	l of	Eng	inee	ring	0	40	
Adjustable Speed Drives	G	EI	E	2		40	10	40	
Electric Transmission and Distribution	G	ET -	E	5		50	10	40	
Systems	G	ΕT	Е	3		20	0	20	
Electronic Power Supplies	G	Α	Е	3		30	10	40	
Finite Elements for Electrical Engineering	G	ΕT	Е	3		15	0	15	
Introduction to Electric Power Systems	G	А	Е	3		30	10	40	
Physics of Alternative Energy	G	ET	Е	3		10	0	10	
Power Electronics	G	ET	Е	3		20	10	30	
Power System Stability	G	ΕT	E	3		20	0	20	
Power Systems Economics and Planning	G	A	E	3		20	10	30	
Resonant Power Converters	G	ET	E	3		20	0	20	

		ed	nt	rs		Enrolled Students			
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Transients, Surges and Faults in Power Systems	G	ET	Е	3		20	0	20	
Electric and Hybrid Vehicles	U	А	Е	3		15	0	15	
Electric Energy Conversion Systems	U	Т	Е	4	Y	30	0	30	
Electrical Engineering Design Project in Power	U	Т	Е	3		15	0	15	
Electrical Power and Machinery	U	А	Е	3	Y	15	0	15	
Introduction to Electric Power Systems	U	А	Е	3		30	10	40	
North Carolina State Uni	ivers	ity a	it Ra	leig	h			-	
Business of Electric Power Utility	G	А	Е	3		35	0	35	
Capstone Project	G	А	Е	3		30	2	32	
Communication and SCADA Systems for	G	А	Е	3	Y	35	8	43	
Smart Grid Computational Methods for Power	G	A	E	3	-	25	0	25	
Engineering Dynamics and Control of Electric Machines	G	Δ	Е	3		15	5	20	
Electric Power Generation: Conventional and	G	A	Е	3	Y	30	10	40	
Renewable	C		г	2	v	(0)	15	75	
Power Electronics	G	A	E	3	Ŷ	60	15	75	
Power Electronics and Utility Applications	G	A	Е	3		25	0	25	
Power Electronics Design & Packaging	G	A	Е	3		25	0	25	
Power Engineering Practicum	G	A	E	3		30	3	33	
Power System Dynamics	G	Α	Е	3		35	15	50	
Power System Operation and Control	G	Α	E	3		50	10	60	
Power System Protection	G	Α	Е	3	Y	30	7	37	
Smart Power Distribution Systems	G	А	Е	3	Y	45	5	50	
Electric Motor Drives	U	Α	Е	3		35	0	35	
Electric Power Systems	U	Т	Е	3		65	0	65	
Power Electronics	U	А	Е	3	Y	50	0	50	
Power System Analysis	U	А	Е	3		45	0	45	
Renewable Electric Energy Systems	U	А	Е	3	Y	45	0	45	
North Dakota State	e Un	ivers	sity						
Power Systems Dynamics Stability and Control	G	ET	Е	3		7	0	7	
Energy Conversion	U	Т	М	4	Y	40	0	40	
Power Systems Analysis	U	А	Е	3		25	0	25	
Power Systems Design	U	А	Е	3		25	0	25	
Northeastern U	nive	rsity							
Power Electronics	G	А	Е	4	Y	50	0	50	
Power System Analysis	G	А	Е	4	Y	35	5	40	
State Estimation	G	SP	Е	4		9	0	9	
Sustainable Energy	G	А	Е	4	Y	50	0	50	
Unbalanced Power Systems	G	А	Е	4		35	5	40	
Northern Arizona	Uni	vers	ity						
Electric Drives	G	А	Е	3	Y	3	0	3	
Power Systems	G	ET	Е	3	Y	1	0	1	
Renewable Energy Systems	G	А	Е	4	Y	1	0	1	
Electric Drives	U	А	Е	3	Y	42	0	42	
Power Systems	U	EТ	Е	3	Y	46	0	46	
Renewable Energy Systems	U	А	Е	4	Y	44	0	44	
Ohio Northern I	Inive	ersit	v	Ľ	-		, .		
Energy Systems 1	U	A	, М	4	Y	15	0	15	
Energy Systems 2	U	A	м	3	-	15	0	15	
Photovoltaic and Power Devices	Ū	A	E	3	-	9	0	9	
Smart Grid	Ū	A	F	3	-	11	0	11	
Ohio State Un	iver	sitv.		Ľ	I			_ · ·	
Advanced Topics of Electric Machines	G	FT	F	3		25	0	25	
Advanced Topics of Power Electronics	G	ET.	F	3	-	23	0	25	
Advanced Topics of Power Systems	G	ET.	F	3	-	24	0	24	
Electric Machines	U	1	F	2		2.3 55	0	2.5 55	
Lacon machines	U	А	111	5		55	v	55	

						Enrolled Students			
Course Title	Level	Offered	Requirement	Credit Hours	Lab	On-Campus	Distance Ed.	Total	
High Voltage Engineering	U	А	Е	3	Y	45	0	45	
Power Electronics	U	А	Е	3		92	0	92	
Power Electronics Lab	U	А	Е	1	Y	48	0	48	
Power System	U	А	Е	3		75	0	75	
Power System Analysis and Operation	U	А	Е	3		43	0	43	
Sustainable Energy and Power Systems I	U	Т	М	3		180	0	180	
Sustainable Energy and Power Systems II	U	А	Е	3		45	0	45	
Sustainable Energy Lab	U	Т	Е	1	Y	32	0	32	
Oklahoma State U	Jniv	ersit	y						
Advanced Power Electronics	G	ET	Е	3		6	1	7	
Direct Energy Conversion	G	А	Е	3		8	2	10	
Engineering Systems Reliability Evaluation	G	Α	Е	3		39	5	44	
Introduction to Smart Grid	G	А	Е	3		3	0	3	
Energy, Environment and Economics	U	А	Е	3		13	4	17	
Power Electronics	U	А	Е	3		19	8	27	
Power System Analysis	U	Α	Е	3		21	7	28	
Old Dominion U	nive	ersity	,				<u> </u>		
Electric Drives	G	Α	Е	3		30	0	30	
Marine Power & Energy Systems	G	А	Е	3		30	0	30	
Power Electronics	G	A	E	3		30	0	30	
Power System Design & Analysis	G	A	E	3		30	0	30	
Electrical Power & Machinery	U	A	м	3		50	0	50	
Introduction to Electrical Power	U	A	м	3	_	50	0	50	
Marine Power & Energy Systems	U	A	E	3	_	30	0	30	
Motor Drives	U	Δ	F	3	_	30	0	30	
Power Electronics	U	Δ	E	3		30	0	30	
Power System Design & Analysis	U	Δ	E	3		30	0	30	
Oregon State U	nive	rsitv	2	5		50	0	50	
Contemporary Energy Applications	G	Δ	м	4		90	0	90	
Power Electronics	G	Δ	F	4	v	25	0	25	
Power System Protection	G	Δ	F	3		50	0	50	
Power Systems Analysis	G	Δ	E	4		20	0	20	
Dynamics of Electromechanical Energy		л	1	-		20	0	20	
Conversion	U	A	Е	4	Y	40	0	40	
Electromechanical Energy Conversion	U	А	М	4	Y	60	0	60	
Hybrid Electric Vehicles	U	А	Е	3		40	0	40	
Power Electronics	U	А	Е	4	Y	100	0	100	
Power Systems Analysis	U	Α	Е	4		75	0	75	
Smart Grid	U	Α	Е	3		50	0	50	
Pennsylvania State Univ	ersit	у, Н	arris	burg	3				
Power Systems Analysis I	G	А	Е	3		20	0	20	
Power Systems Analysis II	G	ET	Е	3		1	0	1	
Power Systems Control and Operation	G	ET	Е	3		1	0	1	
Smart Grid System Evaluation and Modeling	G	ET	Е	3		10	0	10	
Energy Systems and Conversion	U	Α	М	3		35	0	35	
Power Electronics	U	Α	Е	3		20	0	20	
Power Systems Analysis I	U	Α	Е	3	Y	20	0	20	
Power Systems Analysis II	U	ΕT	Е	3	Y	1	0	1	
Portland State U	nive	ersity	,						
Advanced Power Systems Protection	G	А	М	4		20	0	20	
Advanced Topics in Power Systems	G	SP	Е	4		20	0	20	
Power Operations Fundamentals I	G	SP	Е	4		20	0	20	
Power Operations Fundamentals II	G	SP	Е	4		20	0	20	
Power Systems Analysis	G	А	М	4		20	0	20	
Power Systems Control	G	SP	Е	4		20	0	20	
Power Systems Design	G	А	М	4		20	0	20	
Power Systems Protection	G	А	М	4	Y	20	0	20	
			_						

			nt	LS	Lab	Enrolled Students			
Course Title	Level	Offered	Requiremen	Credit Hou		On-Campus	Distance Ed.	Total	
Analytical Methods for Power Systems	U	А	М	4		30	0	30	
Power Systems Design	U	А	М	4		30	0	30	
Power Systems I	U	А	М	4	Y	35	0	35	
Power Systems II	U	А	М	4	Y	35	0	35	
Power Systems Protection	U	А	М	4	Y	30	0	30	
Purdue University	Nor	thw	est	-					
Advanced Electric Drives	G	ΕT	Е	3	Y	15	0	15	
Power Electronics	G	ΕT	Е	3	Y	5	0	5	
Power Systems	G	ΕT	Е	3		10	0	10	
Electric Machines and Drives	U	А	Е	3	Y	16	0	16	
Energy Systems	U	А	Е	3		15	0	15	
Power Electronics	U	А	Е	3	Y	13	0	13	
Power Systems	U	А	Е	3		20	0	20	
Renewable Energy Systems	U	ΕT	Е	3		20	0	20	
Purdue University, V	Vest	Lafa	yett	e		-			
Advanced Analysis of Electromechanical Systems	G	ET	Е	3		10	0	10	
Energy Conversion	G	А	М	3		25	10	35	
Magnetic Component Design	G	ΕT	Е	3		15	10	25	
Modeling and Simulation of Power System Components	G	ET	Е	3		15	10	25	
Operation of Modern Power Systems	G	ΕT	Е	3		30	0	30	
Electric Drives	U	А	Е	3		30	0	30	
Electric Vehicles	U	А	Е	3		40	0	40	
Electromechanics	U	Т	Е	3	Y	200	50	250	
Power Electronics	U	А	Е	3	Y	50	0	50	
Power Engineering	U	А	Е	3		30	0	30	
Rensselaer Polytech	nnic	Insti	itute	l	I				
Advanced Electrical Drive Systems	G	ΕT	Е	3		2	0	2	
Advanced Power Electronics	G	ΕT	Е	3	Y	7	0	7	
Advanced Power System Modeling and Control	G	ET	Е	3		5	0	5	
Computer Methods in EPE	G	ΕT	Е	3		7	0	7	
Electric and Magnetic Field in EPE	G	ET	Е	3		9	0	9	
Power Generation, Operation, and Control	G	ET	Е	3		5	0	5	
Power Quality	G	ΕT	Е	3		5	0	5	
Power System Analysis	G	А	Е	3		5	0	5	
Surge Phenomenon in EPE	G	ΕT	Е	3		8	0	8	
Ultra-Wide-Area Resilient Electric Energy Transmission Systems	G	ΕT	Е	3		7	0	7	
Electric Power Laboratory	U	А	Е	4	Y	9	0	9	
Electrical Energy Systems	U	А	М	3		104	0	104	
Electromechanics	U	А	Е	3		10	0	10	
Fields and Waves II	U	А	Е	3		3	0	3	
Power Engineering Analysis	U	А	Е	3		10	0	10	
Semiconductor Power Electronics	U	А	Е	3		15	0	15	
Ryerson Univ	/ersi	ty				-			
Advanced AC Drives Systems	G	А	Е	3		20	0	20	
Modelling and Control of Power-Electronic Converters	G	А	Е	3		20	0	20	
Power Converter Systems	G	А	Е	3		20	0	20	
Power Systems Stability and Control	G	А	Е	3		20	0	20	
Switch-Mode Power Supplies	G	А	Е	3		20	0	20	
Vector Control of Rotating Machines	G	А	Е	3		20	0	20	
Advanced Electric Drives	U	А	Е	3	Y	80	0	80	
Alternative Energy Systems	U	А	Е	3	Y	80	0	80	
Electric Vehicles	U	А	Е	3	Y	80	0	80	
Energy Conversion	U	А	М	3	Y	80	0	80	
Power Systems Analysis	U	А	Е	3	Y	80	0	80	

Course TitleFFFFFFFFFFFFFFFFFPower Systems ProtectionsCNNN			ed	nt	IS		Enrolled Students			
Provension and controlUNNN <th< th=""><th>Course Title</th><th>Level</th><th>Offered</th><th>Requireme</th><th>Credit Hou</th><th>Lab</th><th>On-Campus</th><th>Distance Ed.</th><th>Total</th></th<>	Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
National control of AC MachineGAEAIJAIAdvanced Power ElectronicsGAKIAKIAIIAIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <td>Power Systems Protection and Control</td> <td>U</td> <td>А</td> <td>Е</td> <td>3</td> <td>Y</td> <td>80</td> <td>0</td> <td>80</td>	Power Systems Protection and Control	U	А	Е	3	Y	80	0	80	
Advanced Power ElectronicsGAEIII <thi< th="">IIIII</thi<>	San Jose State U	Jnive	ersit	y				-	-	
Vector Control of AC MachinesGAE3AE3C15015Electrical MachinesUAE3V2020Power SystemsUAE3V2020Power SystemsGAKZV20020Enarcierization of Photovoltaic CleusGAKZV20020Energy Management SystemsGAKZV20202020Energy Storage SystemsGAKZZZ02020Inroductio to Allemative Energy SystemsGAKZZZ02020Photovoltaic Devices and SystemsGAKZZZ02020Sustainabe Energy SystemGAKZZZ0202020Power System GenerationGKKZZZ02	Advanced Power Electronics	G	А	Е	3		15	0	15	
ElectronicsUAE3V2000Power SystemsUAE3V25025Power SystemsGAKV2U202Characterization of Photovoltaic CleusGAKVV2U2202Energy Management SystemsGAKVVV20202020202020202020202020202020202020	Vector Control of AC Machine	G	Α	Е	3		15	0	15	
Power ElectronicsUAEAVZZ02Power SystemsCVVVZV2002Characterization of Photovoltaic DevicesGAKZVZ002Earger Management SystemsGAKVZVZ022Earger Storage SystemsGGAKZVZZ022Introduction to Alternative Energy SystemGAKZVZZZ022Potovoltaic Devices and SystemsGAKZZ <thz< th="">ZZZ<td>Electrical Machines</td><td>U</td><td>А</td><td>Е</td><td>3</td><td></td><td>20</td><td>0</td><td>20</td></thz<>	Electrical Machines	U	А	Е	3		20	0	20	
Power SystemsUAE3Z2020colspan= <t< td=""><td>Power Electronics</td><td>U</td><td>А</td><td>Е</td><td>3</td><td>Y</td><td>25</td><td>0</td><td>25</td></t<>	Power Electronics	U	А	Е	3	Y	25	0	25	
Stanta Clara UniversityCharacterization of Photovoltaic DevicesGÅE2V20020Design and Fabrication of Photovoltaic CBGÅW2V22222222222221022210222102210221022102210221022102210221022102210221022102210 <td< td=""><td>Power Systems</td><td>U</td><td>Α</td><td>Е</td><td>3</td><td></td><td>20</td><td>0</td><td>20</td></td<>	Power Systems	U	Α	Е	3		20	0	20	
Characterization of Photovoltaic DevicesGAEZUQQQDesign and Fabrication of Photovoltaic CellsGAW2V24024Energy Management SystemsGAW2V22202Introduction to Alternative Energy SystemGAW2V1003Introduction to Smart GridGAM2V1001Photovoltaic Devices and SystemsGAM2V10010Dipcis in Energy SystemsGAM2V10010Topics in Energy SystemsGKKKVN01010Cover System AnalysisUAKKVN0101010Power System Stability and ControlUAKKVN10101010Chright SystemsUAKKVN10	Santa Clara Ur	niver	sity	1			r	-		
Design and Fabrication of Photovoltaic CellsGAMQY24024Energy Management SystemsGAM2Z25025Energy Storage SystemsGAM2Z202023Introduction to Alternative Energy SystemsGAM2Z202023Introduction to Smart GridGAM2ZZ025Photovoltaic Devices and SystemsGAM2ZV15015Power System GenerationGAMZZV101010Topics in Energy SystemsGKKKYN01	Characterization of Photovoltaic Devices	G	Α	E	2		20	0	20	
Energy Management SystemsGAF2C250025Energy Storage SystemsGAM2I280020Introduction to Alternative Energy SystemsGAM2I230023Introduction to Smart GridGAM2I230023Introduction to Wind Energy EngineeringGAM2I250025Sustainable Energy, Engineering and EthicsGAM2I10010Topics in Energy SystemsGKKE4Y808Power System AnalysisUAKE4Y8030Electric Energy SystemsUVAKE4V30030Electronechanical Energy ConversionUKKK4V30030Electronics nableUKKKK4V30030Electronics nableUKKKKK3103030Electronics nableUKKKKK101010Energy SystemsUKKKKK101010Electronics nableUKKKKK101010Electronics na Labo <td>Design and Fabrication of Photovoltaic Cells</td> <td>G</td> <td>Α</td> <td>М</td> <td>2</td> <td>Y</td> <td>24</td> <td>0</td> <td>24</td>	Design and Fabrication of Photovoltaic Cells	G	Α	М	2	Y	24	0	24	
Energy Storage SystemsGAMQQ280028Introduction to Alternative Energy SystemsGAMQQQQQIntroduction to Smart GridGAMQQQ<	Energy Management Systems	G	А	E	2		25	0	25	
Introduction to Alternative Energy SystemsGTM24040Introduction to Smart GridGAM22.50.023Introduction to Wind Energy EngineeringGAK21.50.015Power System GenerationGAK2V1.50.010Topics in Energy SystemsGGKM2V1.0010Topics in Energy SystemsGGKKKV8.08.08.Power System AnalysisUAKE4V1.0010Power System Stability and ControlUKKK40.01010Power System AnalysisUKKK41.001010Power System Stability and ControlUKK41.001010Power System AnalysisUKKK41.0101010Power System AnalysisUKKKK1.01.0101010Power Systems In Developing CountriesUKKK41.010 <td>Energy Storage Systems</td> <td>G</td> <td>Α</td> <td>М</td> <td>2</td> <td></td> <td>28</td> <td>0</td> <td>28</td>	Energy Storage Systems	G	Α	М	2		28	0	28	
Introduction to Smart GridGAMQZ30023Introduction to Wind Energy EngineeringGAMQZV150025Photovoltaic Devices and SystemsGAM3ZZ50025Sustainable Energy, Engineering and EthicsGAM3ZZ0010Topics in Energy SystemsGGFE2Z10010Energy System DesignUAKKKKKN2N010Power System AnalysisUAKKKKKN1001	Introduction to Alternative Energy Systems	G	Т	М	2		40	0	40	
Introduction to Wind Energy EngineeringGAM12C250025Photovoltaic Devices and SystemsGAKC2Y15015Power System GenerationGAM2C10010Topics in Energy System DesignUAKE4Y80080Power System AnalysisUAKE4Y10010Power System Stability and ControlUAKE4Y10030Power System Stability and ControlUKKK4Y10040Electric Energy SystemsUKKKK102020Power System AnalysisUKKKK10151015Power Systems in Developing CountriesUKKK1310151015Renewable Energy SystemsUKKKK141510151015Power System Sin Developing CountriesUKKKK1310101010Power Systems In Developing CountriesUKKKK1510151015Power Systems In Developing CountriesUKKKK14Y101010Power Distri	Introduction to Smart Grid	G	А	М	2		23	0	23	
Photovoltaic Devices and SystemsGAEZYI.50.015Power System GenerationGTM3Z250.025Sustainable Energy, Engineering and EthicsGKM2Z100.010Topics in Energy SystemsUAKE2Z100.010Power System AnalysisUAKKY8.00.08.0Power System Stability and ControlUAKKY8.00.030Electric Energy SystemsUKKKY24.00.020Power System AnalysisUKKKK10.02020Power ElectronicsUKKKK10.015350.035Power Systems in Developing CountriesUKKK10.010.0100100Power Systems in Developing CountriesUKKK10.010.0100100Power SystemsDeveloping CountriesUKKK10.010.0100100Power Systems in Developing CountriesUKKK10.010.0100 <td>Introduction to Wind Energy Engineering</td> <td>G</td> <td>А</td> <td>М</td> <td>2</td> <td></td> <td>25</td> <td>0</td> <td>25</td>	Introduction to Wind Energy Engineering	G	А	М	2		25	0	25	
Power System GenerationGTM3L25025Sustainable Energy, Engineering and EthicsGAM2I10010Topics in Energy SystemsGIAE2I0010Energy System DesignUAE4Y808Power System Stability and ControlUAE4Y10010Power System Stability and ControlUAM4I40010Electromechanical Energy ConversionUKKK440020Power System AnalysisUKKKK102020Power System AnalysisUKKK101535035Power Systems in Developing CountriesUKKK101010Power SystemsDakota School Of MixerKK10101010Power Distribution & TransmissionUSK115015Power GenerationUSKK115015Power Systems IUAKKK15015Power Systems IUAKKK15015Power Systems IUAKKK101010Power Systems I </td <td>Photovoltaic Devices and Systems</td> <td>G</td> <td>А</td> <td>Е</td> <td>2</td> <td>Y</td> <td>15</td> <td>0</td> <td>15</td>	Photovoltaic Devices and Systems	G	А	Е	2	Y	15	0	15	
Sustainable Energy, Engineering and EthicsGAMQII0I0Topics in Energy SystemsGETEQII0I0Energy System DesignUAE4Y808Power System AnalysisUAE4Y10010Power System Stability and ControlUAE4Y10010Power System Stability and ControlUAK4Y30030Electric Energy SystemsUKKK4240040Electromechanical Energy ConversionUKKK420020Power System AnalysisUKKKK15035Power Systems in Developing CountriesUKKK15015Renewable Energy SystemsUSPK3V10010Power ElectronicsUSPK3V10010Power Systems IUSPKSS101010Power Systems IUSPKSS10151015Power Systems IUKKKKS10151015Power Systems IUKKKKKS10151015<	Power System Generation	G	Т	М	3		25	0	25	
Topics in Energy SystemsGETE2I1010Energy System DesignUAE4Y808Power System AnalysisUAE4Y10010Power System Stability and ControlUAE4Y8008Bectric Energy SystemsUAM4Z30030Electric Energy SystemsUVFE440040Energy Conversion LabUFE4Z402020Power System AnalysisUFE4Z20020Power Systems in Developing CountriesUFE315035Power SystemsDeveloping CountriesUSS15012Power SystemsDeveloping CountriesUSS10010Power Systems in Developing CountriesUSS15015Power SystemsDeveloping CountriesUSS15012Power SystemsDeveloping CountriesUSS15010Power SystemsDeveloping CountriesUSS15012Power SystemsDeveloping CountriesUSS15015Power SystemsTransmissionUSS15 <td>Sustainable Energy, Engineering and Ethics</td> <td>G</td> <td>А</td> <td>М</td> <td>2</td> <td></td> <td>10</td> <td>0</td> <td>10</td>	Sustainable Energy, Engineering and Ethics	G	А	М	2		10	0	10	
Energy System DesignUAE4Y808Power System AnalysisUAE4Y10010Power System Stability and ControlUAE4Y10010Power System Stability and ControlUAK4Y1030Electric Energy SystemsUKK4440030Electromechanical Energy ConversionUVK4440024Power ElectronicsUKK4K35035Power System AnalysisUKK4K35035Power Systems in Developing CountriesUKKK101010Power SystemsDakota School OffKKK101010Power Distribution & TransmissionUSKS101010Power Systems IUKKKK101010Power Systems IUKKKK101010Power Systems IUKKKK101010Power Systems IUKKKK101010Power Systems IUKKKKK1010Power Systems IUKKKKK10	Topics in Energy Systems	G	ΕT	Е	2		10	0	10	
Power System AnalysisUAE4V10010Power System Stability and ControlUAE4V808Seattle UniversionElectric Energy SystemsUVFE4004Electronechanical Energy ConversionUFTE4V4004Energy Conversion LabUETE4V102020Power ElectronicsUETE4V15035Power System AnalysisUKFE4V15035Power Systems in Developing CountriesUKKV10010Power SystemsDeveloping CountriesUKKV10010Power SystemsDeveloping CountriesUKKV10010Power SystemsDeveloping CountriesUKKV10010Power SystemsDeveloping CountriesUKKV10010Power SystemsDeveloping CountriesUKKV10010Power SystemsDeveloping CountriesUKKK101010Power SystemsDeveloping CountriesUKKKK101010Power SystemsDeveloping Count	Energy System Design	U	А	Е	4	Y	8	0	8	
Power System Stability and ControlUAE40808Seattle UniversionElectric Energy SystemsUAM423030Electromechanical Energy ConversionUETE424020Energy Conversion LabUETE422020Power ElectronicsUETE423530Power System AnalysisUETE441535Power Systems in Developing CountriesUSPE41635Renewable Energy SystemsUSPE4151015Renewable Energy SystemsUSPE3Y10010Power Optier FlectronicsUSPE3Y10012Power GenerationUSPE3V151015Power Systems ICuth Dakkat SchoolUAE4Y15015Power Systems IUNAESS161016Power Systems IUNAESS151015Power Systems ICuth Dakkat SchoolGAMSS151015Power Systems ICuth Dakkat SchoolGAMSS151015<	Power System Analysis	U	А	Е	4	Y	10	0	10	
Beatter UniversionUAM4I300030Electronechanical Energy ConversionUETE440040Energy Conversion LabUETE2Y240020Power ElectronicsUETE4035035Power System AnalysisUETE4035035Power Systems in Developing CountriesUSPE4035035Renewable Energy SystemsUKK4V35035Gorid Connected Power ElectronicsUSPE3Y10010Power ElectronicsUSPE3V151015Power GenerationUSPE3V151015Power Systems IUVAE4Y15015Power Systems IUVAE3V151015Power Systems IUDathAEAY15015Power Systems ICDathAKKY15015Power Systems ICDathAKKK15015Power Systems ICDathAKKKK16016 <tr< td=""><td>Power System Stability and Control</td><td>U</td><td>А</td><td>Е</td><td>4</td><td></td><td>8</td><td>0</td><td>8</td></tr<>	Power System Stability and Control	U	А	Е	4		8	0	8	
Electric Energy SystemsUAM4A300030Electromechanical Energy ConversionUETE440040Energy Conversion LabUETE2Y24020Power ElectronicsUETE4035035Power System AnalysisUETE4035035Power Systems in Developing CountriesUSPE4035035Renewable Energy SystemsUKFE4V35035South Dakota School of MinerSPE3Y30030Grid Connected Power ElectronicsUSPE3Y10010Power Systems IUSPE3V151015Power GenerationUSPE3V151015Power Systems IUAE4Y15015Power Systems IUKKKK151015Power Systems TheoryGAM4Y15015Power Systems TheoryGAM3U15015Indare Applied Power System SegnineeringGAM3U15016Power Systems TheoryG	Seattle Univ	ersit	у	-				1	1	
Electromechanical Energy ConversionUETE4440040Energy Conversion LabUETE2Y24024Power ElectronicsUETE42035Power System AnalysisUETE4415035Power Systems in Developing CountriesUSPE4415035Renewable Energy SystemsUKTE4415035South Dakota School of MinerSPE3Y30030Grid Connected Power ElectronicsUSPE3Y10010Power SystemsUSPE3V151015Power GenerationUSPE3V15015Power Systems IUAE4Y15015Power Systems IUAEAY15015Advanced Power ElectronicsGAM3V15015Advanced Power SystemGGAM3V15015Inear Systems TheoryGAM3V15015Inear Systems TheoryGAM4Y18016Power Systems EngineeringGAM4 <td>Electric Energy Systems</td> <td>U</td> <td>Α</td> <td>М</td> <td>4</td> <td></td> <td>30</td> <td>0</td> <td>30</td>	Electric Energy Systems	U	Α	М	4		30	0	30	
Energy Conversion LabUETE2Y24024Power ElectronicsUETE42020Power System AnalysisUETE4235035Power Systems in Developing CountriesUSPE4035035Renewable Energy SystemsUKFE4035035South Dakota School of MiresSouth Dakota School of MiresPower SystemsUAM3Y30030Grid Connected Power ElectronicsUSPE3Y101010Power Systems IUSPE3V151015Power GenerationUSPE3V15015Power Systems IUAE4Y15015Power Systems IUAEAM3V1010Advanced Power ElectronicsGAM3U15015Indar Systems TheoryGAM3U15015Indar Systems TheoryGAM3U15016Power Systems EngineeringGAM4Y18016Indar Systems EngineeringGAM4 </td <td>Electromechanical Energy Conversion</td> <td>U</td> <td>ΕT</td> <td>Е</td> <td>4</td> <td></td> <td>40</td> <td>0</td> <td>40</td>	Electromechanical Energy Conversion	U	ΕT	Е	4		40	0	40	
Power ElectronicsUETE4200020Power System AnalysisUETE435035Power Systems in Developing CountriesUSPE4035035Renewable Energy SystemsUETE4035035South Dakota School of Mires are reserveEnergy SystemsUAM3Y30030Grid Connected Power ElectronicsUSPE3Y10010Power Distribution & TransmissionUSPE3V15015Power GenerationUSPE3U15015Power Systems IUAE4Y15015Power Systems IUAEAY10010Power Systems IUAEAM3V1015Advanced Power ElectronicsGAM3U15015Iniar Systems TheoryGAM3U15015Model and Control of Power ElectronicsGAM3U15016Photovoltaic Systems EngineeringGAM4Y18016Photovoltaic Systems And LabUAKK4 <td< td=""><td>Energy Conversion Lab</td><td>U</td><td>ΕT</td><td>Е</td><td>2</td><td>Y</td><td>24</td><td>0</td><td>24</td></td<>	Energy Conversion Lab	U	ΕT	Е	2	Y	24	0	24	
Power System AnalysisUETE4335035Power Systems in Developing CountriesUSPE415015Renewable Energy SystemsUETE44335035South Dakota School of Mires are reserveEnergy SystemsUAM3Y30030Grid Connected Power ElectronicsUSPE3Y10010Power Distribution & TransmissionUSPE3V15015Power GenerationUSPE3V15015Power Systems IUAE4Y15015Power Systems IIUAKK3V101013Advanced Power ElectronicsGAM3V15015Linear Systems TheoryGAM3V15015Model and Control of Power ElectronicsGAM3V16016Power SenimarGAM4Y18016Power SenimarGAM4Y18016Power SenimarGAKK4V10010Power SenimarGKKKKV <t< td=""><td>Power Electronics</td><td>U</td><td>ΕT</td><td>Е</td><td>4</td><td></td><td>20</td><td>0</td><td>20</td></t<>	Power Electronics	U	ΕT	Е	4		20	0	20	
Power Systems in Developing CountriesUSPE4I15015Renewable Energy SystemsUETE4V35035South Dakota School of Miner and UBenergy SystemsUAM3Y30030Grid Connected Power ElectronicsUSPE3Y10010Power Distribution & TransmissionUSPE3V15012Power GenerationUSPE3V15015Power Systems IUAE4Y15015Power Systems IIUAE3U131013Advanced Power ElectronicsGAM3V15015Inder Systems TheoryGAM3U15015Model and Control of Power ElectronicsGAM3U15015Model and Control of Power ElectronicsGAM4Y18016Power SeminarGKKKU15015Model and Control of Power ElectronicsGAKV16016Power SeminarGKKKU15015Model and Control of Power ElectronicsGKKKV <td< td=""><td>Power System Analysis</td><td>U</td><td>ΕT</td><td>Е</td><td>4</td><td></td><td>35</td><td>0</td><td>35</td></td<>	Power System Analysis	U	ΕT	Е	4		35	0	35	
Renewable Energy SystemsUETE43333333South Dakota School of Miner and Terrer	Power Systems in Developing Countries	U	SP	Е	4		15	0	15	
Bouth Dakota School of Mineral School	Renewable Energy Systems	U	ΕT	Е	4		35	0	35	
Energy SystemsUAM3Y30030Grid Connected Power ElectronicsUSPE3Y10010Power Distribution & TransmissionUSPE3V12012Power ElectronicsUAE4Y15015Power GenerationUSPE3V16016Power Systems IUAE4Y15015Power Systems IIUAE3U13013Matanced Power ElectronicsGAM3V12012Advanced Power SystemGAM3U15015Linear Systems TheoryGAM3U15015Model and Control of Power Electronics SystemsGAM3U15015Power SeminarGGAM4Y18018Power SeminarGGAKU1501010Electronics I and LabUAKKV10010Electronics I and LabUAKKV10010Electronics I and LabUKKKKV10010Electronics I and LabUK	South Dakota School of Mi	ines	and	Tech	nol	ogy	1	1	1	
Grid Connected Power ElectronicsUSPE3Y10010Power Distribution & TransmissionUSPE3U12012Power ElectronicsUAE4Y15015Power GenerationUSPE3U16016Power Systems IUAE4Y15015Power Systems IIUAE3U13013South Dakota StateNotwer System Colspan="6">South Dakota StateMavanced Power ElectronicsGAM4Y12015Linear Systems TheoryGAM3U5015Model and Control of Power ElectronicsGAM4Y18018Power SeminarGAKE3U15015Model and Control of Power ElectronicsGAK4Y18018Power SeminarGAKE3U15015Mid Energy SystemsGAKKY1001010Electronics I and LabUAKKY20020Electronics I and LabUAKKY101010Electronics I and LabU	Energy Systems	U	А	М	3	Y	30	0	30	
Power Distribution & TransmissionUSPE3120012Power ElectronicsUAE4Y15015Power GenerationUSPE3V16016Power Systems IUAE4Y15015Power Systems IIUAE3U13013South Dakota StateNower System IIGAM4Y12012Advanced Power ElectronicsGAM3U15015Linear Systems TheoryGAM3U5015Model and Control of Power ElectronicsGAM4Y18018Power SeminarGAKE3U15015Model and Control of Power ElectronicsGAKY10010Power SeminarGAKE3U15015Wind Energy SystemsGAKKY1001010Electronics I and LabUKKKY20020Electronics I and LabUKKKS15015Linear Control SystemsGMKKKS20020Ele	Grid Connected Power Electronics	U	SP	Е	3	Y	10	0	10	
Power ElectronicsUAE4Y15015Power GenerationUSPE3016016Power Systems IUAE4Y15015Power Systems IIUAE3013013South Dakota StateVoltage System StateVoltage SystemAdvanced Power ElectronicsGAM4Y12012Advanced Power SystemGAM3U15015Linear Systems TheoryGAM3U5015Model and Control of Power Electronics SystemsGAM4Y18018Power SeminarGAKE4Y10010Potovoltaic Systems EngineeringGAK4Y10010ElectromagneticsUAE4Y10010Electronics I and LabUAKK4Y20020Electronics I and LabUAKKS15015Linear Control SystemsAKKKK15015Linear Control SystemsAKKKK15015Electronics II and LabUK <t< td=""><td>Power Distribution & Transmission</td><td>U</td><td>SP</td><td>Е</td><td>3</td><td></td><td>12</td><td>0</td><td>12</td></t<>	Power Distribution & Transmission	U	SP	Е	3		12	0	12	
Power GenerationUSPE316016Power Systems IUAE4Y15015Power Systems IIUAE3U13013South Dakota StateVoltame Gower ElectronicsGAM4Y12012Advanced Power SystemGGAM3U15015Linear Systems TheoryGGAM3U5015Model and Control of Power Electronics SystemsGAM3U15016Power SeminarGGAM4Y18018Power SeminarGGAE3U15015Und Energy SystemsGAKE4Y10010ElectromagneticsUAE4Y20020Electronics I and LabUAKK4Y20020Electronic Systems Analysis and LabUAKK3U15015Linear Control SystemsGMAKKS020 <t< td=""><td>Power Electronics</td><td>U</td><td>Α</td><td>E</td><td>4</td><td>Y</td><td>15</td><td>0</td><td>15</td></t<>	Power Electronics	U	Α	E	4	Y	15	0	15	
Power Systems IUAE4Y15015Power Systems IIUAE3013013South Dakota StateUEURATION OF Systems IIAdvanced Power ElectronicsGAM4Y12012Advanced Power SystemGAM3015015Linear Systems TheoryGAM30505Model and Control of Power Electronics SystemsGAM301010Photovoltaic Systems EngineeringGAM4Y18018Power SeminarGAKE30101010Electronics I and LabUAKY1001010Electronics I and LabUAK4Y10010Electronics I and LabUAKK4Y10010Electronics I Systems Analysis and LabUAKK32020Electronics I and LabUAKKS101010Electronics I and LabUAKKS101010Electronics I and LabUKKKS101010Electronics I and LabUKK <td< td=""><td>Power Generation</td><td>U</td><td>SP</td><td>Е</td><td>3</td><td></td><td>16</td><td>0</td><td>16</td></td<>	Power Generation	U	SP	Е	3		16	0	16	
Power Systems IIUAE313013South Dakota StateUNENTIAL STATEAdvanced Power ElectronicsGAM4Y12012Advanced Power SystemGAM3015015Linear Systems TheoryGAM30505Model and Control of Power Electronics SystemsGAM305010Photovoltaic Systems EngineeringGAM4Y18018Power SeminarGAKE30606Applied Photovoltaics and LabUAE4Y10010Electronics I and LabUAK4Y20020Electronics I and LabUAKS315015Linear Control SystemsMAKK32020Electronics II and LabUAKK315015Linear Control Systems Analysis and LabUAK4Y10010Power Systems Analysis and LabUAKK4Y10010Electronics I and LabUAKKK1501515Linear Control SystemsAnalysis and Lab<	Power Systems I	U	Α	E	4	Y	15	0	15	
Note Dakota State University Advanced Power Electronics G A M 4 Y 12 0 12 Advanced Power System G A M 3 I 15 0 15 Linear Systems Theory G A M 3 I 5 0 5 Model and Control of Power Electronics G A M 4 Y 10 0 10 Photovoltaic Systems Engineering G A M 4 Y 10 0 18 Power Seminar G A E 4 Y 10 0 15 Wind Energy Systems G A E 4 Y 10 0 10 Electronagnetics G A E 4 Y 10 0 20 Electronics I and Lab U A K K Y 20 0 20 Electronics I and Lab U A K K Y 20 0 20	Power Systems II	U	Α	Е	3		13	0	13	
Advanced Power ElectronicsGAM4Y12012Advanced Power SystemGAM3I15015Linear Systems TheoryGAM3I505Model and Control of Power ElectronicsGAK4Y10010Photovoltaic Systems EngineeringGAM4Y18018Power SeminarGTE1I15015Wind Energy SystemsGAE4Y10010ElectronagneticsUAE4Y20020Electronics I and LabUAK4Y20020Electronics II and LabUAK4Y20020Engineering Economics and ManagementUAK4Y15015Linear Control SystemsUAKK4Y15015Quere Systems Analysis and LabUAKKY15015Linear Control SystemsMKKKY15015Dewer System Analysis and LabUAKKY15015Dewer System Analysis and LabUKKKY15015Dewer System Analysis and	South Dakota State	e Un	ivers	sity						
Advanced Power SystemGAM315015Linear Systems TheoryGAM3505Model and Control of Power ElectronicsGAE4Y10010Photovoltaic Systems EngineeringGAM4Y18018Power SeminarGAE1L15015Wind Energy SystemsGAE3C606Applied Photovoltaics and LabUAE4Y10010ElectronagneticsUAM4Y20020Electronics I and LabUAM4Y20020Electronic SI and LabUAK315015Linear Control SystemsManagementUAK320020Power System Analysis and LabUAK4Y15015Linear Contrology TourUKKK4Y15015	Advanced Power Electronics	G	A	M	4	Y	12	0	12	
Linear Systems TheoryGAM3505Model and Control of Power ElectronicsGAE4Y10010Photovoltaic Systems EngineeringGAM4Y18018Power SeminarGAE1I15015Wind Energy SystemsGAE1I010Power SeminarGAE1I015Wind Energy SystemsGAE3I606Applied Photovoltaics and LabUAE4Y20020Electronechanical Systems and LabUAK4Y20020Electronics I and LabUAK4Y20020Engineering Economics and ManagementUAK32020Power Systems Analysis and LabUAK4Y15015Linear Control SystemsUAKK4Y15015Power Sechnology TourUKKK4Y10010	Advanced Power System	G	A	M	3		15	0	15	
Model and Control of 10 ver ElectronicsGAE4Y10010Photovoltaic Systems EngineeringGAM4Y18018Power SeminarGTE1U15015Wind Energy SystemsGAE3U606Applied Photovoltaics and LabUAE4Y10010ElectromagneticsUAM4Y20020Electronics I and LabUAM4Y20020Electronics II and LabUAM4Y20020Engineering Economics and ManagementUAM315015Linear Control SystemsUAKKY15015Power Systems Analysis and LabUAE4Y15015Power Technology TourUEE1U10010	Linear Systems Theory Model and Control of Power Electronics	G	A	М	3		5	0	5	
Photovoltaic Systems EngineeringGAM4Y18018Power SeminarGTE1IIIIIWind Energy SystemsGAE3I6AIIIIIIApplied Photovoltaics and LabUAE4Y10IIIElectromechanical Systems and LabUAK4Y20020Electronics I and LabUAM4Y20020Electronics II and LabUAKS3I15015Engineering Economics and ManagementUAKS2002020Power Systems Analysis and LabUAKS15015Power Technology TourUKKS110010	Systems	G	А	Е	4	Y	10	0	10	
Power SeminarGTE1I15015Wind Energy SystemsGAE3C606Applied Photovoltaics and LabUAE4Y10010ElectromagneticsUAM4Y20020Electromechanical Systems and LabUAM4Y20020Electronics I and LabUAM4Y20020Electronics II and LabUAM4Y20020Engineering Economics and ManagementUAM3U15015Linear Control SystemsLabUAE4Y15015Power Technology TourUEE1U10010	Photovoltaic Systems Engineering	G	А	М	4	Y	18	0	18	
Wind Energy Systems G A E 3 6 6 6 Applied Photovoltaics and Lab U A E 4 Y 10 0 10 Electromagnetics U A M 4 Y 20 0 20 Electromechanical Systems and Lab U A K 4 Y 20 0 20 Electronics I and Lab U A M 4 Y 20 0 20 Electronics I and Lab U A M 4 Y 20 0 20 Engineering Economics and Management U A K 3 0 15 0 15 Linear Control Systems M K K K K K 15 0 15 Power Systems Analysis and Lab U K K K K 10 0 10	Power Seminar	G	Т	Е	1		15	0	15	
Applied Photovoltaics and Lab U A E 4 Y 10 0 10 Electromagnetics U A M 4 Y 20 20 20 Electromechanical Systems and Lab U A K 4 Y 20 0 20 Electronics I and Lab U A M 4 Y 20 0 20 Electronics I and Lab U A M 4 Y 20 0 20 Engineering Economics and Management U A K S 15 0 15 Linear Control Systems M K K K K K 10 10 10 10 Power System Analysis and Lab U K K K K K K 10 10 10 10 10 10	Wind Energy Systems	G	А	Е	3		6	0	6	
ElectromagneticsUAM4Y20020Electromechanical Systems and LabUAE4Y20020Electronics I and LabUAM4Y20020Electronics II and LabUAM4Y20020Engineering Economics and ManagementUAK3U15015Linear Control SystemsUAKK4Y15015Power Systems Analysis and LabUKE1V10010	Applied Photovoltaics and Lab	U	А	Е	4	Y	10	0	10	
Electromechanical Systems and LabUAE4Y20020Electronics I and LabUAM4Y20020Electronics II and LabUAM4Y20020Engineering Economics and ManagementUAE3U15015Linear Control SystemsUAKS20020Power Systems Analysis and LabUAE4Y15015Power Technology TourUEE1U10010	Electromagnetics	U	А	М	4	Y	20	0	20	
Electronics I and LabUAM4Y20020Electronics II and LabUAM4Y20020Engineering Economics and ManagementUAE3U15015Linear Control SystemsUAM3U200020Power Systems Analysis and LabUAE4Y15015Power Technology TourUETE1U10010	Electromechanical Systems and Lab	U	А	Е	4	Y	20	0	20	
Electronics II and Lab U A M 4 Y 20 0 20 Engineering Economics and Management U A E 3 L 15 0 15 Linear Control Systems U A M 3 L 20 0 20 Power Systems Analysis and Lab U A E 4 Y 15 0 15 Power Technology Tour U ET E 1 U 0 10	Electronics I and Lab	U	А	М	4	Y	20	0	20	
Engineering Economics and ManagementUAE3L15015Linear Control SystemsUAM320020Power Systems Analysis and LabUAE4Y15015Power Technology TourUEE1U10010	Electronics II and Lab	U	А	М	4	Y	20	0	20	
Linear Control Systems U A M 3 Z 0 20 Power Systems Analysis and Lab U A E 4 Y 15 0 15 Power Technology Tour U E E 1 U 0 10	Engineering Economics and Management	U	А	Е	3		15	0	15	
Power Systems Analysis and Lab U A E 4 Y 15 0 15 Power Technology Tour U ET E 1 U 10 0 10	Linear Control Systems	U	А	М	3		20	0	20	
Power Technology Tour U ET E 1 10 0 10	Power Systems Analysis and Lab	U	А	Е	4	Y	15	0	15	
	Power Technology Tour	U	ET	Е	1		10	0	10	

			nt	rs		Enrolled Students			
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Suffolk University									
Control Systems	U	А	М	4	Y	15	0	15	
Labview and Electric Machinery	U	Α	Е	4	Y	8	0	8	
Power Devices and Circuits	U	Α	М	4	Y	15	0	15	
Power Systems	U	Α	М	4		15	0	15	
Syracuse Uni Advanced Measurement in Power	versi	ity	-						
Engineering	G	SP	Е	3	Y	11	0	11	
Control of Distributed Generation	G	SP	Е	3		6	0	6	
Distributed Generation Integration in Smart Grid	G	SP	Е	3		7	0	7	
Eletromechanical Devices	G	А	Е	3	Y	4	0	4	
Introduction to Smart Grid	G	SP	Е	3		5	0	5	
Power Electronics	G	SP	Е	3	Y	8	0	8	
Power Systems Protection	G	SP	Е	3	Y	7	1	8	
Sensors and Measurements	G	SP	Е	3		4	2	6	
Smart Grid Security Seminar	G	SP	Е	3		8	0	8	
Smart Grid: Security, Privacy and Economics	G	SP	Е	3		14	0	14	
Distributed Generation Integration in Smart	U	SP	Е	3		5	0	5	
Eletromechanical Devices	U	А	Е	3	Y	23	0	23	
Introduction to Power Engineering	U	A	м	3	Y	27	0	27	
Introduction to Smart Grid	U	SP	Е	3		14	0	14	
Power Electronics	Ū	SP	E	3	Y	11	0	11	
Power System	U	A	E	3	-	15	0	15	
Sensors and Measurements	Ū	SP	E	3		11	0	11	
Temple University									
Electric Machines and Drives	G	A	Е	3		3	0	3	
Power Electronics Devices and Systems	G	А	Е	3		7	0	7	
Power Systems Engineering	G	А	Е	3		11	0	11	
Electromagnetic Energy Systems	U	А	Е	3	Y	15	0	15	
Modern Power Engineering and Electronics	U	А	Е	3		12	0	12	
Power Electronics Devices and Systems	U	А	Е	3		8	0	8	
Tennessee State U	Jniv	ersit	y	l	I				
Modern Control Systems	G	EТ	Е	3		5	0	5	
Probability, Statics and Risk Analysis	G	ΕT	М	3		7	0	7	
Control Systems and Lab	U	А	М	3	Y	10	0	10	
Electric Power Distribution	U	ΕT	Е	3		7	0	7	
Electrical Systems Design Lab	U	А	М	1	Y	14	0	14	
Energy Conversion	U	А	М	3		10	0	10	
Power Systems	U	А	М	3		9	0	9	
Texas A&M U	niver	sity							
Advanced Power Electronics	G	ΕT	Е	3		40	0	40	
Computer Aided Design of Electrical Motion Devices	G	ΕT	Е	3	Y	25	0	25	
Computer Relays for Electric Power Systems	G	ΕT	Е	3	Y	20	0	20	
DC-DC Power Supplies	G	А	Е	3		15	5	20	
Electric and Hybrid Vehicle Engineering	G	ΕT	Е	3		40	0	40	
Electric Machines & Drives	G	А	Е	3		15	5	20	
Electric Power System Reliability	G	ΕT	Е	3		15	0	15	
General Theory of Electromechanical Motion Devices	G	ΕТ	Е	3		25	0	25	
High Voltage DC Power Transmission	G	ΕT	Е	3		35	0	35	
Methods of Electric Power Systems Analysis	G	SP	Е	3		25	0	25	
Motor Drive Dynamics	G	ET	Е	3		20	0	20	
Physical and Economical Operations of	G	А	Е	3		20	0	20	
Power Electronics	G	А	Е	3	-	15	5	20	
Power Electronics for Renewable Energy	G	EТ	Е	3	Y	20	0	20	
Power System Faults and Protective Relaying	G	ΕT	Е	3	Y	20	0	20	

			nt	rs		E St	nrolle tuden	ed ts
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total
Power System Stability	G	ET	Е	3		15	0	15
Power Systems Engineering	G	А	Е	3		15	5	20
Power Systems State Estimation	G	ET	Е	3		30	1	31
Sustainable Energy and Transportation	G	EТ	Е	3		49	0	49
Engineering DC DC Power Supplies	II	٨	Б	2		25	10	25
DSP-Based Electromechanical Motion	0	A .	ь –	5		23	10	35
Control	U	A	Е	3	Y	100	0	100
Electric Machines & Drives	U	Α	Е	3		20	10	30
Electric Power Systems I	U	А	Е	4	Y	70	0	70
Electric Power Systems II	U	Α	E	4	Y	80	0	80
Electronic Motor Drives	U	Α	E	4	Y	100	0	100
Sustainable Energy Systems	U	А	Е	3	Y	30	0	30
Power Electronics	U	А	Е	4	Y	100	0	100
Power Electronics	U	А	Е	3		20	5	25
Power Systems Engineering	U	Α	Е	3		25	10	35
Texas Tech Ur	iver	sity						-
DC-DC Power Supplies	G	А	Е	3		15	5	20
Electric Machines & Drives	G	А	Е	3		15	5	20
Power Electronics	G	А	Е	3		15	5	20
Power Systems Engineering	G	А	Е	3		15	5	20
DC-DC Power Supplies	U	А	Е	3		25	10	35
Electric Machines & Drives	U	А	Е	3		20	10	30
Power Electronics	U	А	Е	3		20	5	25
Power Systems Engineering	U	Α	E	3		25	10	35
Tufts Unive	ersity		n		_	4.0		4.0
Power Electronics	G	A	E	4		10	0	10
Power Systems	G	A	E	4		25	0	25
Power Systems	U	A	E	4		15	0	15
United States Milit	arv 4	Cad	emv	4	L	15	0	15
Alternative Energy Engineering	U.	A	E	3	Y	12	0	12
Electric Power Engineering	U	Т	М	3	Y	29	0	29
Ind. Study in Power Engineering	U	SP	Е	3		2	0	2
University of Alabama	at E	Birmi	ingh	am				
Advanced Induction Machines	G	ΕT	Е	3		5	0	5
Computer Applications in Power Systems	G	ΕT	Е	3		8	0	8
Control of Synchronous Machines	G	ET	Е	3		8	0	8
Industrial Control	G	А	Е	3	Y	3	0	3
Machinery II	G	А	Е	3		3	0	3
Power Line Communications	G	SP	Е	3		1	0	1
Power System Overvoltages	G	ΕT	Е	3		3	0	3
Power Systems I	G	А	Е	3		2	0	2
Powr Semiconductor Electronics	G	SP	E	3		6	0	6
Protection Relay Power Systems	G	A	E	3		1	0	1
Industrial Controls	U	A	E	3	Y	3	0	3
Machinery I	U	A	M	4	Ŷ	49	0	49
Machinery II	U	EI CD	E	3		5	0	5
Power Systems I	U	Δ	E	3		8	0	8
Protective Relaving Power Systems	U	A	E	3		6	0	6
University of Alasl	ca Fa	airba	nks					
Power Electronics Design	G	A	Е	4	Y	1	0	1
Renewable and Sustainable Energy Systems	G	SP	Е	3		4	0	4
Electric Machinery	U	А	М	4	Y	14	0	14
Electrical Power Engineering	U	А	М	4	Y	8	0	8
Electrical Power Systems	U	А	М	4	Y	9	0	9

			ent	LS		Enrolled Students		
Course Title	Level	Offered	Requiremen	Credit Hou	Lab	On-Campus	Distance Ed.	Total
Power Electronics Design	U	А	М	4	Y	8	0	8
Renewable and Sustainable Energy Systems	U	SP	Е	3		2	0	2
University of .	Albe	erta						
Dynamics and Controls of Voltage-Source	G	А	Е	3		20	0	20
Lonverters (ECE 656) Industrial Drive Systems (ECE 531)	G	А	E	4	Y	20	0	20
Modeling and Simulation of Electromagnetic	G		- E	2	-	20	0	20
Transients (ECE 633) Power Convertes and Renewable Energy	U	A	Б	5		20	0	20
Systems (ECE 635)	G	Α	Е	3		20	0	20
Power Electronics Applications in AC and DC Transmission Systems (ECE 730)	G	А	Е	3		20	0	20
Power Electronics Systems Design	G	А	Е	3		20	0	20
(ECE 730) Power Quality and Power Disturbance	Ŭ		-	2		20	Ŭ	20
Analysis (ECE 530)	G	А	E	3		10	0	10
Smart Grid Communications (ECE 730)	G	А	Е	3		20	0	20
Electric Machines (ECE 332)	U	А	М	4	Y	80	0	80
(ECE 330)	U	А	М	3		120	0	120
Power Electronics (ECE 401)	U	Т	Е	4	Y	60	0	60
Power System Analysis (ECE 430)	U	А	Е	3		70	0	70
Power System Stability and Transients (ECE 433)	U	А	Е	4	Y	60	0	60
Variable Speed Drives (ECE 432)	U	А	Е	4	Y	70	0	70
University of A	rka	ısas		l	I			
Design of Advanced Power Distribution	G	А	Е	3		15	5	20
Systems Electric Power Quelity	G	гт	Б	2		15	5	20
Electronic Packaging	G	SD	E	3		15	0	15
Intro to Power Electronics	G	Δ	E	3		25	3	28
Power Electronics and Motor Drives	G	ET	E	3		15	5	20
Power Systems Analysis	G	ET	E	3		5	3	8
Power Systems Operation and Control	G	ET	E	3		5	3	8
Design and Fabrication of Solar Cells	U	А	Е	3		10	0	10
Electric Circuits and Machines	U	Т	Е	3		223	0	223
Electric Power Distribution Systems	U	А	Е	3		20	5	25
Energy Systems	U	А	М	4	Y	50	0	50
Intro to Power Electronics	U	А	Е	3		3	5	8
Power Electronics and Motor Drives	U	SP	Е	3		5	0	5
Power Systems Analysis	U	ΕT	Е	3		25	5	30
Quality of Electric Power	U	SP	Е	3		0	5	5
Switch Mode Power Conversion	U	А	Е	3		15	0	15
University of 0	Calg	ary	1	r –	r –	-	1	1
Energy Systems	G	А	Е	3		15	0	15
Power Systems Operation (ENEL 601)	G	А	Е	3		15	0	15
Restructured Electricity Markets (ENEL 693)	G	А	Е	3		15	0	15
Electric Machines (ENEL 489)	U	А	Е	3	Y	52	0	52
Energy Systems (ENEL 487)	U	А	М	3	Y	170	0	170
Power Electronics (ENEL 585)	U	А	Е	3	Y	48	0	48
Power Systems (ENEL 587)	U	А	Е	3	Y	50	0	50
Power Systems Operation (ENEL 597)	U	Α	Е	3		50	0	50
Power Systems Protection	U	A	Е	3	Y	75	0	75
University of Califor	nia,	Ber	kele	y				
(EE290C)	G	Α	Е	3		15	0	15
Electric Power Systems (ER 254)	G	А	Е	3		25	0	25
Energy and Society (ER C200)	G	Α	Е	4		170	0	170
Photovoltaic Materials; Modern Technologies in the Context of a Growing Renewable Energy Market (ER C226/Mat Sci226)	G	ΕT	Е	4		25	0	25
Energy and Society (ER C100)	U	А	Е	4		180	0	180
Fundamentals of Photovoltaic Devices (EE134)	U	А	Е	4		25	0	25

			ıt	s		Enrolled Students		
Course Title	Level	Offered	Requiremen	Credit Hour	Lab	On-Campus	Distance Ed.	Total
Introduction to Electric Power Systems (EE137A)	U	А	Е	4		42	0	42
Introduction to Electric Power Systems (EE137B)	U	А	Е	4		15	0	15
University of Californi	ia, L	os A	nge	les				
Design and Analysis of Smart Grid	G	А	М	4		5	0	5
Dynamics and Control of Power Systems	G	А	М	4		5	0	5
Power Systems Fundamentals	U	Α	М	4		5	0	5
University of Cen	tral l	Flori	da	1	1		1	1
Advanced Electric Machinery	G	ET	E	3		10	0	10
Advanced Power Systems Analysis	G	ET	E	3		10	0	10
Advanced Topics in Power Engineering	G	ΕT	Е	3		10	0	10
Smart Grid	G	ΕT	Е	3		10	0	10
Electric Machinery	U	А	Е	3	Y	65	0	65
Fundamentals of Electric Power Systems	U	А	Е	3	Y	65	0	65
Intro to Smart Grid	U	ΕT	Е	3	Y	25	0	25
Power Electronics I	U	Α	Е	3	Y	30	0	30
University of I	Den	ver	-					
Electric Power Economy	G	A	E	4		10	0	10
Electric Power Systems	G	A	E	4		6	0	6
Introduction to Power and Energy	G	A	E	4		8	0	8
Power Generation, Operation, and Control	G	E1 ET	E	4		8	0	8
Ponewahla and Efficient Power and Energy	G		E	1		/ 0	0	/ 0
SCADA Systems	G	A	E	4		4	0	4
Electric Power Economy	U	A	E	4		4	0	4
Electric Power Systems	U	A	E	4		6	0	6
Intro to Power and Energy Sys	Ū	A	M	3	Y	16	0	16
Renewable & Efficient Power System	Ū	A	М	4	-	6	0	6
University of Houston								
Advanced Power System Analysis	G	А	Е	3		18	0	18
Electrical Power Regulations and Standards	G	Т	Е	3		20	0	20
Industrial Power Monitoring and Control	G	ΕT	М	3		28	0	28
Industrial Power System Analysis	G	А	М	3		20	0	20
Industrial Power System Management	G	ΕT	М	3		25	0	25
Industrial Power System Protection	G	ΕT	М	3		30	0	30
Industrial Substations and Switching	G	Т	М	3		30	0	30
Power Electronics and Electric Drives	G	Т	Е	3		20	0	20
Power System Analysis	G	А	М	3		20	0	20
Power System Control and Stability	G	ΕT	Е	3		10	0	10
Power System Transients, Harmonics and	G	Т	Е	3		10	0	10
Smart Grid Technology	G	А	Е	3		30	0	30
Electromechanical Energy Conversion	U	А	М	3		40	0	40
Energy Conversion Laboratory	U	А	М	1	Y	40	0	40
Power Electronics and Electric Drives	U	А	Е	3		25	0	25
Power Transmission and Distribution	U	А	М	3		25	0	25
Power Transmission and Distribution	U	А	М	1	Y	25	0	25
Laboratory Renewable Energy Technology	U	А	Е	3		15	0	15
Smart Grid Technology	U	A	Е	3		15	0	15
University of	Idal	10		<u> </u>			<u> </u>	
Advanced Electrical Machinery	G	SP	Е	3		6	29	35
Dynamics and Control of AC Drives	G	SP	Е	3		9	14	23
Induction Machines	G	EТ	Е	3		9	17	26
Power Systems Protection and Relaying	G	ΕT	Е	3		12	45	57
Protection of Power Systems II	G	ΕT	Е	3		13	34	47
Resilient Control of Power Grid	G	Α	Е	3		15	0	15

			nt	urs		Enrolled Students			
Course Title	Level	Offered	Requiremen	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Supervisory Control and Critical	G	ET	Е	3		12	19	31	
Symmetrical Components	G	ΕT	Е	3		16	27	43	
Transients in Power Systems	G	ΕT	Е	3		14	16	30	
Understanding Power Quality	G	ΕT	Е	3		13	18	31	
Utility Applications of Power Electronics	G	ΕT	Е	3		10	23	33	
Energy Systems I	U	А	М	3		38	3	41	
Energy Systems I Lab	U	А	М	1	Y	37	0	37	
Energy Systems II	U	А	Е	3		40	9	49	
Introduction to Power Systems	U	А	Е	3		30	9	39	
Power Electronics	U	А	Е	3		33	5	38	
Power Systems Analysis	U	А	Е	3		20	9	29	
Supervisory Control and Critical Infrastructure Systems	U	ΕT	Е	3		14	5	19	
University of Illinois at U	rbaı	na-C	ham	paig	'n				
Advanced Power Electronics	G	ΕT	Е	4		26	0	26	
Analysis Techniques for Large-Scale Electrical Systems	G	Α	Е	4		16	0	16	
Dynamic System Reliability	G	ET	E	4		19	0	19	
Electrical Machine Design	G	ΕT	Е	4		22	0	22	
Electricity Resource Planning	G	ΕT	Е	4		20	0	20	
Systems	G	ΕT	Е	4		18	0	18	
Power System Dynamics and Stability	G	ΕT	Е	4		14	0	14	
Power Systems Operations and Control	G	ΕT	Е	4		17	0	17	
Electric Machinery	U	А	Е	4	Y	62	0	62	
Green Electric Energy	U	Т	Е	3		181	0	181	
Power Circuits and Electromechanics	U	Т	Е	3		334	0	334	
Power Distribution Systems Analysis	U	ΕT	Е	3		30	0	30	
Power Electronics	U	А	E	3		99	0	99	
Power Electronics Lab	U	A	E	2	Y	46	0	46	
Power System Analysis	U	A	E	3		48	0	48	
Techniques for Engineering Decision Making	U	A	Е	3		27	0	27	
University of K	enti	ку	Б	2	<u> </u>	0	0	0	
Advanced Electromechanics	G	A	E	2		1	0	1	
Alternative and Renewable Energy Systems	G	л FT	F	3		8	0	8	
Electric Power Economics and Public Policy	G	A	E	3		2	0	2	
Power and Energy Experiences	G	A	E	3		6	0	6	
Power Distribution Systems	G	ET	E	3		5	0	5	
Power System Fault Analysis and Protection	G	А	Е	3		1	0	1	
Power System Fundamentals	G	А	Е	3		1	0	1	
Power Systems: Generation, Operation and Control	G	ET	Е	3		3	0	3	
Smart Grid-Automation and Control of Power Systems	G	Α	Е	3		2	0	2	
Sustainable and Renewable Energy Systems	G	A	E	3		0	0	0	
Advanced Electromechanics	U	A	E	3		5	0	5	
Advanced Power System Protection	U	A	E	3		16	0	16	
Alternative and Renewable Energy Systems	U	ET	E	3		36	0	36	
Electric Power Economics and Public Policy	U	A	E	5	-	21	0	21	
Electric Power Systems I	U	A CD	E	2		27	0	27	
Electromechanics	U	т	E	3	-	20 57	0	20 57	
Energy Conversion Laboratory	U	т	M	2	Y	69	0	69	
Power Distribution Systems	U	т FT	F	2	-	29	0	29	
Power System Fault Analysis and Protection	U	A	E	3	-	7	0	7	
Power System Fundamentals	U	A	Ē	3	-	30	0	30	
Power Systems: Generation, Operation and Control	Ū	ET	Е	3		22	0	22	

			nt	IS		E St	nrolle tuden	d ts
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total
Smart Grid-Automation and Control of Power Systems	U	А	Е	3		39	0	39
Sustainable and Renewable Energy Systems	U	А	Е	3		21	0	21
University of	Mai	ne			-			
Electric Machinery	U	Α	М	4	Y	25	2	27
Power Systems Analysis	U	Α	Μ	4	Y	25	2	27
Protective Relaying	U	A	E	3	Y	16	1	17
Relay Communications		A	E	4	Y	20	5	25
University of Marylan	a Ca	FT	e Pa	rk 3		15	0	15
Advanced Power Mechanics (ENME808A)	G	SP	F	3		15	0	15
Energy Systems Analysis (ENME635)	G	ET	E	3		12	0	12
Mechanical Design of Extreme Temperature and High Power Electronics (ENME 780)	G	ET	E	3		21	0	21
Electric Machines Laboratory (ENEE 473)	U	А	Е	2	Y	15	0	15
Power Electronics (ENEE 475)	U	А	Е	3		45	0	45
Power Systems (ENEE 474)	U	А	Е	3		45	0	45
Renewable Energy (ENEE 419R)	U	Α	E	3		60	0	60
University of M	1emp	phis	Б	2		25	0	25
Electrical Power Quality	G	A	E	3		25	0	25
Electrical Power Systems	G	SP	E	3		25	0	25
Power Distribution System	G	SP	E	2		25	0	25
Power Electronics	G	SP	E	3		25	0	25
Power System Stability/Control	G	SP	E	3		25	0	25
Wind Energy Conversion Systems	G	SP	E	3		25	0	25
Electrical Power Quality	U	A	E	3		25	0	25
Electrical Power Systems	U	SP	Е	3		25	0	25
Energy Conversion	U	А	М	4	Y	30	0	30
Power Distribution System	U	SP	Е	3		25	0	25
University of Michig	an -	Dea	rbor	n		-		-
Introduction to Energy Systems	G	А	Е	3		34	26	60
Introduction to Power Management and Reliability	G	А	Е	3		17	0	17
Introduction to Electrical Power Systems	U	А	Е	3		34	0	34
Power Electronics	U	А	Е	3	Y	30	0	30
University of Michig	an, A	Ann	Arbo	or				
Advanced Topics in Power System Analysis	G	ΕT	Е	3		20	0	20
Analysis of Electric Power Distribution Systems and Loads	G	ΕT	Е	3		20	0	20
Electric Drives	G	ΕT	Е	4	Y	15	0	15
Electricity Markets and Optimization	G	ΕT	Е	3		25	0	25
Infrastructure for Vehicle Electrifications	G	SP	Е	3		15	0	15
Power Electronic Design	G	А	Е	4	Y	20	0	20
Power System Dynamics and Control	G	ΕT	Е	3		25	0	25
Electric Machinery and Drives	U	А	Е	4	Y	30	0	30
Grid Integration of Alternative Energy Sources	U	ΕT	Е	4		40	0	40
Power Electronics	U	А	Е	4	Y	40	0	40
Power System Design and Operation	U	А	Е	4		30	0	30
University of Minneso	ta -7	win	Citi	ies				
Advanced Electric Drives	G	ΕT	Е	3		20	2	22
Advanced Power Electronics	G	ΕT	Е	3		25	5	30
Modeling Analysis and Control of Renewable Energy Systems	G	Α	Е	3		20	2	22
Power Generation Operation and Control	G	ΕT	Е	3		20	2	22
Electric Drives (EE 4701)	U	Α	Е	3	Y	70	0	70
Power Electronics (EE4741)	U	А	Е	3	Y	70	0	70
Power Systems (EE 4721)	U	A	E	3	Y	70	0	70
Sustainable Electricity Supply (EE2701)	U	А	E	3		37	0	37

			Ħ	s		Enrolled Students		
Course Title	Level	Offered	Requiremer	Credit Hour	Lab	On-Campus	Distance Ed.	Total
University of Missou	ri -	Colu	mbi	a	-		-	
Energy and Machines	G	А	Е	3		2	0	2
Power Electronics	G	А	Е	3	Y	2	0	2
Power Systems Analysis	G	Α	Е	3		5	0	5
Sustainable Electrical Energy Resources	G	А	Е	3		5	0	5
Electromagnetic Fields	U	Т	М	#		8	0	8
Energy and Machines	U	Α	E	#		20	0	20
Energy and Machines Lab	U	Α	E	0	Y	0	0	0
Power Electronics 1	U	A	E	#	Y	10	0	10
Power Systems Analysis	U	A	E	#		40	0	40
Sustainable Electrical Energy Resources	U	Α	E	#		43	0	43
Electrochemical Devices	U	SP	Е	3		3	0	3
U Problems in ECE/Power	U	Т	Е	5		5	0	5
University of Missour	i - K	ansa	is C	ity		-	-	
Automatic Control Systems Design	G	А	Е	3		46	0	46
Auxiliary Electric Systems Design	G	А	Е	3		25	0	25
Direct Current Power Systems	G	ΕT	Е	3		26	0	26
Economics of Power Systems	G	А	Е	3		35	0	35
Electric Power Distribution Systems	G	Т	Е	3		36	0	36
Electric Power Lab	G	А	Е	3	Y	15	0	15
Energy Systems for Engineering	G	А	Е	3		63	0	63
Fundamental Solar Cell-Photovoltaic	G	А	Е	3		127	0	127
Instrumentation and Control	G	Т	Е	3		66	0	66
Lightning and Switching Surges in Power Systems	G	SP	Е	3		24	0	24
Power Quality	G	А	Е	3		14	0	14
Power System Transmission Planning	G	SP	Е	3		17	0	17
Power Systems II	G	Т	М	3		31	0	31
Power Systems Relaying	G	ΕT	Е	3		40	0	40
Reliability of Electric Power Systems	G	Т	Е	3		30	0	30
Solar Photovoltaic Systems Engineering	G	А	Е	3		88	0	88
Sustainable Energy Systems in Engineering	G	SP	Е	3		34	0	34
Wind Energy	G	SP	Е	3		63	0	63
Advanced Sustainable Energy System	U	А	Е	3		7	0	7
Automatic Control Systems Design	U	А	Е	3		18	0	18
Electric Machines	U	SP	Е	3		3	0	3
Electric Power Distribution Systems	U	Т	Е	3		6	0	6
Electric Power Lab	U	А	Е	3	Y	12	0	12
Energy Systems for Engineering	U	SP	Е	3		9	0	9
Fundamentals of Solar Cell-Photovoltaic	U	А	Е	3		2	0	2
Introduction to Control Systems	U	А	Е	3		41	0	41
Power Electronics I	U	А	Е	3		18	0	18
Power Quality	U	А	Е	3		1	0	1
Power Systems I	U	А	М	3		54	0	54
Power Systems II	U	Т	Е	3		11	0	11
Reliability of Electric Power Systems	U	Т	Е	3		2	0	2
Solar Photovoltaic Systems Engineering	U	А	Е	3		7	0	7
Substation Design	U	SP	Е	3		16	0	16
Symmetrical Components and Power	U	Т	Е	3		4	0	4
Dystems Upivareity of Makes	ska	L in	L COle		-	L		L
Advanced Power Electronics & Applications	G	FT	F	3		7	0	7
Computational Intelligence	G	A	E	3	-	, 10	0	10
Electricity Markets	G	ЕТ	Ē	3	-	5	0	5
Reliability and Maintainability Engineering	G	SP	Ē	3	-	6	0	6
Decision Analysis	Ū	ET	E	3		10	0	10
Electric Machines	U	А	Е	3		20	0	20
L								

			ıt	S		ed ts		
Course Title	Level	Offered	Requiremen	Credit Hou	Lab	On-Campus	Distance Ed.	Total
Introduction to Electric Power and Energy Systems	U	Α	Е	3		24	6	30
Power Electronics	U	А	Е	3	Y	37	0	37
Power System Analysis	U	А	Е	3		8	0	8
Power System Planning	U	ET	Е	3		7	0	7
Solar Energy	U	А	Е	3		18	0	18
Wind Energy	U	А	Е	3		35	12	47
University of New	ada,	Rei	10					
Microgrid Operation and Control	G	ΕT	Е	3		9	0	9
Power System Operation with Renewable	G	ET	Е	3		7	0	7
Power Systems Planning	G	ET	Е	3		10	0	10
Power Systems State Estimation	G	ET	Е	3		10	0	10
Electric Power Distribution	U	ΕT	Е	3		20	0	20
Electrical Machines	U	А	Е	3		15	0	15
Power Electronics	U	А	Е	3		15	0	15
Power System Fundamentals	U	А	М	3		45	0	45
Power System Protection	U	ΕT	Е	3		18	0	18
Power Systems Analysis	U	А	Е	3		17	0	17
University of Ne	ew H	laver	1					
Electric Drives	G	Т	М	3		16	0	16
Electric Drives Laboratory	G	Т	М	1	Y	12	0	12
Electric Power Distribution	G	А	Е	3		16	0	16
Introduction to Smart Grid	G	А	Е	3		18	0	18
Power Electronics	G	Т	М	3		15	0	15
Power Electronics Laboratory	G	Т	М	1	Y	12	0	12
Power System Engineering	G	Т	М	3		18	0	18
Power Systems Laboratory	G	Т	М	1	Y	12	0	12
Electric Drives	U	Т	E	3		12	0	12
Electric Drives Laboratory	U	Т	E	1	Y	10	0	10
Power Electronics	U	Т	E	3		15	0	15
Power Electronics Laboratory	U	1	E	1	Y	12	0	12
Power System Engineering	U	Т Т	E	5	v	15	0	15
University of North Car	olina	1 at C	 Char	lotte	1	15	0	15
Distribution Systems I	G	ΕT	Е	3		26	0	26
Distribution Systems II	G	ΕT	Е	3		15	0	15
Electric Machines	G	А	Е	3		4	0	4
Energy Markets	G	А	Е	3		4	0	4
Energy Systems	G	А	Е	3		5	0	5
Power Sys Stability & Control	G	А	Е	3		9	0	9
Power System Relaying	G	ET	Е	3		16	0	16
Power System Stability & Control	G	ET	Е	3		9	0	9
Smart Grid	G	ΕT	Е	3		17	0	17
Utility Applications of Power Electronics	G	А	Е	3		17	0	17
Electric Machines	U	А	Е	3		5	0	5
Electromagnetic Devices	U	А	Е	3	Y	35	0	35
Energy Markets	U	А	Е	3		5	0	5
Energy Systems	U	Α	Е	3		9	0	9
Power Electronics	U	Α	Е	3		21	0	21
Power Generation, Operation and Control	U	A	E	3		4	0	4
Power Systems I	U	A	Ē	3		15	0	15
Power Systems II	U	A	E	3		3	0	3
Utility Applications of Power Electronics	U	А	E	3		3	0	3

			nt	LS		Enrolled Students		
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total
University of No	rth I	Dako	ta					
Linear Programming Models for Smart Grid	G	ΕT	Е	3	Y	9	0	9
Power Electronics	G	ΕT	Е	3	Y	12	5	17
Power Systems I	G	ET	Е	3		10	2	12
Renewable Energy Systems	G	ΕT	Е	3		20	15	35
Smart Grid Architectures and Models	G	ET	E	3	Y	4	2	6
Smart Grid Data Security	G	ET	E	3	Y	5	4	9
Electric Drives	U	Α	М	3	Y	37	42	79
Electric Power Systems I	U	ET	E	3		30	21	51
Linear Programming Models for Smart Grid	U	ET	E	3	Y	4	22	26
Power Electronics	U	ET	E	3	Y	34	23	57
Renewable Energy Systems	U	ET	Е	3	Y	39	30	69 -
Smart Grid Architectures and Models	U	ET	E	3	Y	5	0	5
Smart Grid Data Security	U	1	Е	3		10	12	22
Energy Conversion	кап	оша	м	0	· · ·	26	0	26
Energy Conversion	U	1	IVI E	9		20	1	20
Power System Operation	U	A	Б	9 0		10	0	10
Transmission System Analysis	U	A	E	9		18	0	10
University of P	ittsb	noh	Б	,		18	0	10
Electrical Distribution Engineering &	G	ET	Е	3	Y	15	2	17
Analysis II Embedded Systems	G	Δ	F	3		15	0	15
FACTS and HVDC Technologies and	G	A	Е —	5		15	-	15
Applications	G	ΕT	E	3		25	7	32
Linear System Theory	G	А	Е	3		25	7	32
Microgrid Concepts and Distributed Generation	G	ΕT	Е	3		20	7	27
Optimization Methods	G	А	Е	3		15	0	15
Power & Energy Industry Practices	G	ΕT	Е	3		20	7	27
Power Electronics Circuits and Applications	G	А	Е	3		25	7	32
Power System Engineering & Analysis 2	G	А	Е	3		25	7	32
Power System Stability	G	ΕT	Е	3		15	0	15
Power System Steady-State Control	G	ΕT	Е	3		15	0	15
Power System Transients 1	G	ΕT	Е	3		15	7	22
Protective Relaying and Substation	G	ΕT	Е	3	Y	15	7	22
Renewable and Alternative Energy Systems	G	ΕT	Е	3		20	7	27
Smart Grid Technologies and Applications	G	ΕT	Е	3	Y	25	7	32
Stochastic Processes	G	А	Е	3		15	0	15
Sustainable Power System Modeling	G	ΕT	Е	3		20	0	20
Cost and Construction of Electrical Supply	U	ΕT	Е	3		15	0	15
Electric Distribution Engineering and Smart Grids	U	А	Е	3	Y	25	0	25
Electric Machinery	U	А	Е	3	Y	25	0	25
Electrical Power Transmission, Distribution & Grid Technologies	U	ΕT	Е	3		25	0	25
Linear Control Systems	U	А	Е	3		50	0	50
Power Electronics Circuits and Applications	U	А	Е	3		25	0	25
Power Electronics Conversion Theory	U	ΕT	Е	3		20	0	20
Power Generation, Operation, and Control	U	А	Е	3		20	0	20
Power System Engineering and Analysis 1	U	А	М	3		50	0	50
Thermodynamics	U	А	Е	3		10	0	10
University of Sas	katel	hewa	an					
Economic System Operation	G	А	Е	3		10	0	10
Power System Reliability	G	А	Е	3		11	0	11
Power Systems Analysis	G	А	Е	3		10	0	10
Power Systems Modeling & Control	G	А	Е	3		5	0	5
Power Systems Protection & Relaying	G	А	Е	3		10	0	10
Reliability Engineering	G	Α	Е	3		11	0	11

			nt	Bar Bar <th colspan="3">urolled udents</th>				urolled udents		
Course Title	Level	Offered	Requiremen	Credit Hou	Lab	On-Campus	Distance Ed.	Total		
Advanced Analysis of Electric Machines & Drive Systems	U	А	м	3	Y	26	0	26		
Basic Electronics & Electric Power	U	А	М	3	Y	211	0	211		
Electric Machines Fundamentals	U	А	М	3	Y	26	0	26		
Introduction to Electric Power Systems	U	А	М	3	Y	43	0	43		
Power Electronics	U	А	М	3	Y	33	0	33		
Power Systems Analysis	U	А	М	3	Y	27	0	27		
Power Systems Operation & Control	U	А	М	3	Y	24	0	24		
Transmission of Electrical Energy	U	А	М	3	Y	22	0	22		
University of Sou	th C	aroli	na							
Advanced Power Electronics	G	ET	Е	3		3	4	7		
Digital Control Systems	G	А	Е	3		2	0	2		
Industrial Controls	G	Α	Е	3		3	0	3		
Integration of PV in Modern Power Systems	G	А	Е	3		2	0	2		
Power Electronics	G	А	Е	3		9	2	11		
Power System Grounding & Transients	G	ΕT	Е	3		6	5	11		
Power Systems Design and Analysis	G	Α	Е	3		8	2	10		
Digital Control Systems	U	Α	Е	3		23	0	23		
Electromechanical Energy Conversion	U	А	Е	3		13	0	13		
Industrial Controls	U	Α	E	3		20	0	20		
Integration of PV in Modern Power Systems	U	Α	E	3		3	0	3		
Power Electronics	U	A	E	3		21	0	21		
Power Systems Design & Analysis	U	A	E	3		17	0	17		
University of Sou	ith F	loric	ia T		_					
Electric Distribution Systems	G	A	E	3		11	5	16		
Electric Machines & Drives	G	A	E	3		13	2	15		
Power Electronics	G	A	E	3		38	3	41		
Power Quality	G	EI A	E	3		0	0	6		
Power System Analysis	G	A	E	3		19	4	23		
Power System Market: Operation & Analysis	G		E	3		4	5	4		
Power Systems II	G	Δ	E	3		2	1	28		
Flactric Distribution Systems	U	Δ	E	3		1	0	1		
Electromechanical Systems	U	Т	м	3	v	46	0	46		
Power Electronics	U	Δ	F	3		3	1	40		
Power Quality	U	ET	E	3		2	2	4		
Power System Analysis	U	A	E	3		10	0	10		
Power System Protection	Ū	A	E	3		1	0	1		
Power Systems II	U	А	Е	3		0	0	0		
University of Sout	hern	Ma	ine	I						
Electric Machinery and Controls Laboratory	п	Δ	м	1	v	36	0	36		
(EGN 329) Electromechanical Energy Conversion (ELE 323)	U	A	M	3	1	36	0	36		
Energy and Power Systems (ELE 327)	U	ΕT	Е	3	Y	36	0	36		
University of St	. The	oma	s	I						
Advanced Controls	G	А	М	3		30	0	30		
Digital Signal Processing 1	G	А	Е	3		20	0	20		
Digital Signal Processing 2	G	А	Е	3		20	0	20		
Electric Machines	G	А	Е	3		30	0	30		
Electromagnetic Fields and Waves	G	А	Е	3		15	0	15		
Power Electronics	G	А	Е	3		25	0	25		
Power Systems	G	А	М	3		40	0	40		
Power Systems Operations/Controls	G	А	Е	3		15	0	15		
Protection and Relaying	G	А	Е	3	Y	15	0	15		
Renewable Energy Generation	G	А	Е	3		25	0	25		
Thesis/Projects 1	G	Т	Е	3	Y	30	0	30		
Thesis/Projects 2	G	Т	Е	3	Y	30	0	30		

		q	nt	ILS		Enrolled Students			
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
University of Tennesse	ee, C	hatt	anoo	oga		1	-	1	
Advance Fuzzy and AI Controls Application	G	А	Е	3		2	0	2	
Digital Communications	G	А	Е	3		3	0	3	
Digital Signal Processing	G	А	Е	3		2	1	3	
Fuzzy Logic and Intelligent Control Application	G	А	Е	3		5	0	5	
Linear Systems	G	А	Е	3		8	1	9	
Power Electronics and Drives	G	А	Е	3		7	0	7	
Power System Analysis and Design	G	А	Е	3		6	0	6	
Power System Operations	G	А	Е	3		3	3	6	
Power System Protection	G	А	Е	3		6	3	9	
Power System Stability and Control	G	А	Е	3		7	0	7	
Setting and Testing Digital Relays	G	А	Е	3		7	0	7	
Smart Distribution Systems	G	А	Е	3		8	5	13	
Sustainable Electric Energy Systems	G	А	Е	3		13	4	17	
Transients in Power Systems	G	А	Е	3		9	8	17	
Linear Controls and Drives Laboratory	U	A	E	1	Y	27	0	27	
Power Electronics	U	Δ	F	3		33	0	33	
Power Electronics Laboratory	U	Δ	E	1	v	10	0	10	
Power Simulation Laboratory	U	A	м	1	v	26	0	26	
Power System Analysis and Design	U	A	M	2	1	40	0	40	
Power System Analysis and Design	U	A	IVI E	2		40	0	40	
Prover System in Transferit	U	A	E	2		1 20	0	20	
Protective Relaying	U	A	E	2		30	0	30	
Setting and Testing Digital Relays	U	A	E	3		12	0	2	
Smart Power Distribution	0	A	E	3		12	9	21	
University of Tennes	see,	Kno	XVII	ie		10	0	10	
Advanced Power Electronics and Drives	G	A	E	3		12	0	12	
Advanced Power Grid Protection	G	A	E	3		20	0	20	
Advanced Power Grid Simulations	G	ET	E	3		4	0	4	
Alternative Energy Sources	G	ET	E	3		30	0	30	
Independent Study: Power Systems Stability	G	SP	E	3		2	0	2	
Power Electronics and Drives	G	A	E	3		10	0	10	
Power Electronics Technologies	G	A	E	3	Y	10	0	10	
Power System Economics	G	ΕT	E	3		8	0	8	
Power Systems Analysis I	G	Α	E	3		7	0	7	
Power Systems Analysis II	G	А	E	3		12	0	12	
Special Topics: Exploratory Research in Grid Dynamics	G	SP	Е	3		6	0	6	
Special Topics: Power Electronic Circuits	G	SP	Е	3		8	0	8	
Special Topics: Power Electronics	G	SP	Е	3		3	0	3	
Special Topics: Power Systems State	G	SP	Е	3		10	0	10	
Estimation Ultra-Wide-Area Resilient Electrical Energy				-					
Transmission Networks	G	Т	Е	3		20	10	30	
Utility Applications of Power Electronics	G	ΕT	Е	3		14	0	14	
Electric Energy Systems	U	А	Е	3		9	0	9	
Electric Energy Systems Components	U	Т	М	3		65	0	65	
Power Electronic Circuits	U	А	Е	3	Y	4	0	4	
Power Electronics	U	А	Е	3		17	0	17	
Power System Operations and Planning	U	А	Е	3		10	0	10	
Power/Energy Systems Seminar	U	А	Е	3		3	0	3	
University of Texas	at A	rlin	gton	I					
Power Electronics	G	ΕT	Е	3		42	0	42	
Power System Distribution Analysis	G	А	Е	3		13	0	13	
Power Systems Modeling and Analysis	G	А	Е	3		39	3	42	
Power Systems Protective Relaying	G	ΕT	Е	3		30	4	34	
Programmable Logic Controller in Industrial	G	БŢ	E	3		56	0	56	
Automation		 	r r	2	37	25	0	25	
Fundamentals of Power Systems	U	T	Е	3	Ŷ	25	0	25	

			Ħ	s		Enrolled Students			
Course Title	Level	Offered	Requiremen	Credit Hou	Lab	On-Campus	Distance Ed.	Total	
Introduction to Power Electronics	U	А	Е	3	Y	61	0	61	
University of Texa	is at	Aus	tin	-	-	-	-	-	
Energy Systems	G	Α	Е	3		20	0	20	
Power Systems Apparatus and Laboratory	G	А	Е	3	Y	20	0	20	
Restructured Electricity Markets	G	ET	Е	3		20	0	20	
Topics in Power System Engineering	G	Α	Е	3		20	0	20	
Electric Drives and Machines	U	Α	Е	3		35	0	35	
Power Electronics Laboratory	U	Т	Е	4	Y	75	0	75	
Power Systems Apparatus and Laboratory	U	Α	Е	3	Y	25	0	25	
Power Systems Engineering	U	А	Е	3		70	0	70	
University of Texa	s at	El Pa	aso						
Control of Electric Power	G	Α	Е	3		5	0	5	
High Frequency Power Conversion	G	А	Е	3		7	0	7	
Power System Operations	G	Α	Е	3		16	0	16	
Control of Electric Power	U	Α	Е	3		10	0	10	
Electric Power Systems	U	А	Е	3		12	0	12	
Energy Conversion	U	А	Е	3		15	0	15	
Power Electronics	U	А	Е	3		15	0	15	
Power System Operations	U	А	Е	3		16	0	16	
University of Texas a	t Sa	n Ar	ntoni	0				-	
Modeling of Three-Phase PWM Converters	G	ET	Е	3		5	0	5	
Power Converters for Distributed Generation	G	ΕT	Е	3		20	0	20	
Analysis of Power Systems	U	А	Е	3		28	0	28	
Electric Drives	U	А	Е	3		28	0	28	
Power Electronics	U	А	Е	3		34	0	34	
Power Engineering Lab	U	ΕT	Е	3		12	0	12	
University of th	e Pa	cific	;						
Topics in Renewable Energy	G	ΕT	Е	3		8	0	8	
Energy Conversion	U	ΕT	Е	4	Y	11	0	11	
Power Electronics	U	ET	Е	4	Y	10	0	10	
Power System Analysis	U	ET	Е	3		15	0	15	
University of 7	Γoro	nto							
Design of High-Frequency Switch-Mode Power Supplies I	G	А	Е	1		20	0	20	
Dynamics of HVDC-AC Transmission Systems	G	ΕT	Е	1		20	0	20	
HVDC Transmission Systems	G	ΕT	Е	1		20	0	20	
Power Management for Photovoltaic Systems	G	А	Е	1		20	0	20	
Power System Optimization	G	А	Е	1		20	0	20	
Smart Grid Case Studies	G	А	Е	1		20	0	20	
Space Vector Theory and Control	G	А	Е	1	Y	15	0	15	
Electric Drives	U	А	Е	3	Y	60	0	60	
Energy Systems and Distributed Generation	U	А	Е	3	Y	100	0	100	
Fundamentals of Electrical Energy Systems	U	А	Е	3	Y	150	0	150	
Introduction to Energy Systems	U	А	М	3	Y	60	0	60	
Introduction to Lighting Systems	U	А	Е	3		20	0	20	
Power Electronics: Converter Topologies	U	А	Е	3	Y	50	0	50	
Power Electronics: Switch-Mode Power	II	٨	Б	2	v	50	0	50	
Supplies		A .	Е	5	1	50	0	50	
University of	Ota	un 👘	г	2	v	0	0	0	
Control of Electric Motors	G	A	E	3	r	8 10	0	ð 10	
Electrical Forensics and Failure Analysis	G	ЕT	E	3	_	10	0	10	
Power System Economics	G	A	E	3	_	12	0	12	
Power System Protection	G	ET	E	3	_	11	0	11	
Power System Security Analysis	G	A	E	3	_	6	0	6	
Sustainable Energy Sources	G	SP	E	3	_	13	0	13	
Utility Applications of Power Electronics	G	SP	E	3		5	0	5	
Control of Electric Motors	U	Α	Ē	3	Y	10	0	10	

			nt	rs		E S	Entrolle Student Student <t< th=""></t<>			
Course Title	Level	Offered	Requireme	Credit Hou	Lab	On-Campus	Distance Ed.	Total		
Electrical Forensics and Failure Analysis	U	ΕT	Е	3		12	0	12		
Introduction to Electric Power Engineering	U	А	Е	3	Y	48	0	48		
Power Electronics Fundamentals	U	А	Е	4	Y	10	0	10		
Power System Planning and Design	U	А	Е	3		10	0	10		
Power System Protection	U	ΕT	Е	3		10	0	10		
Power Systems Analysis	U	А	Е	3		12	0	12		
University of V	/erm	ont	,							
Electric Energy Systems Analysis	G	А	Е	3		15	0	15		
Low Carbon Energy	G	ΕT	Е	3		15	0	15		
Optimization with Energy Applications	G	ΕT	Е	3		7	0	7		
Smart Grid	G	ΕT	Е	3		15	0	15		
Electric Energy Systems	U	А	Е	4	Y	15	0	15		
Electric Energy Systems Analysis	U	А	Е	3		15	0	15		
University of W	ashii	igto	n			-				
Distribution Networks	G	А	Е	4		5	0	5		
Large Electric Energy Systems Analysis	G	ΕT	Е	4		12	0	12		
Power System Dynamics and Control	G	ΕT	Е	4		8	0	8		
Power System Economics	G	ΕT	Е	4		12	0	12		
Special Topics in Energy Systems	G	ΕT	Е	4		10	0	10		
Wind Energy	G	ΕT	Е	4		24	0	24		
Computer-aided Design in Power Systems	U	А	Е	4		35	0	35		
Electric Drives	U	А	Е	5	Y	49	0	49		
Electric Energy Distribution Systems	U	А	Е	4		17	0	17		
Introduction to Electric Energy Devices & Systems	U	Т	Е	5	Y	98	0	98		
Power Electronics Design	U	А	Е	5	Y	51	0	51		
Power System Analysis	U	А	Е	4		45	0	45		
Power System Dynamics and Protection	U	А	Е	4		40	0	40		
Wind Energy	U	ΕT	Е	4		30	0	30		
University of V	Vate	rloo								
Asset Management and Risk Assessment of Power Systems	G	А	Е	3		0	30	30		
Design and Application of DC/DC Converters	G	ET	Е	3		0	20	20		
Dielectric Materials	G	ΕT	Е	3	Y	10	0	10		
Dielectrics and Electrical Insulation	G	ΕT	Е	3		0	20	20		
Distributed Generation	G	А	Е	3		0	30	30		
Distribution Systems Engineering	G	А	Е	3		30	30	60		
Electric Machines and Motor Drives	G	ΕT	Е	3		0	20	20		
Electric Safety and Grounding System Design	G	ET	Е	3		0	20	20		
Electromagnetic Compatibility and Power Quality	G	ΕT	Е	3		0	20	20		
Energy Processing	G	А	Е	3		30	0	30		
FACTS: Models, Controls and Applications	G	ΕT	Е	3		0	20	20		
High Voltage Engineering Applications	G	ΕT	Е	3	Y	10	20	30		
Industrial Utilization of Electrical Energy	G	А	Е	3		0	30	30		
Medium and HV Power Cables	G	ΕT	Е	3		0	20	20		
Operation of Restructured Power Systems	G	ΕT	Е	3		0	20	20		
Power Electronics Converters: Design and Applications	G	ET	Е	3		0	20	20		
Power System Analysis and Control	G	А	Е	3		30	30	60		
Power System Components and Modeling	G	ΕT	Е	3		20	20	40		
Power System Management and Electricity Markets	G	ΕT	Е	3		0	20	20		
Power System Protection	G	А	Е	3		0	30	30		
Power System Quality	G	ΕT	Е	3		20	0	20		
Power Systems Operation	G	А	Е	3		30	0	30		
Sustainable Distributed Generation	G	ΕT	Е	3		30	0	30		
Design and Applications of Power Electronic Converters	U	А	Е	3	Y	50	0	50		

Course Title	Level	Offered	Requirement	Credit Hours	Lab	Enrolled Students				
						On-Campus	Distance Ed.	Total		
Electrical Distribution Systems	U	А	Е	3		50	0	50		
High Voltage Engineering and Power System	U	А	Е	3	Y	50	0	50		
Protection Power System Analysis, Operations and Markets	U	А	Е	3		50	0	50		
Power Systems and Components	U	Т	М	3	Y	120	0	120		
University of We	st F	lorid	a							
Basic Electric Energy Engineering	U	Т	М	3	Y	40	15	55		
Electric Energy Systems-1	U	А	Е	3		15	5	20		
Future Energy Systems	U	ΕT	Е	3		60	0	60		
Power Electronics	U	А	Е	3		50	0	50		
Renewable Energy Systems	U	А	Е	3		60	0	60		
Sustainable Power Systems	U	ΕT	Е	3		60	0	60		
University of Western Ontario										
Computer-based Power Systems Protection	G	А	Е	3		20	0	20		
Flexible AC Transmission Systems FACTS	G	А	Е	3		19	0	19		
High Frequency Power Electronic Converters	G	А	Е	3		14	0	14		
Modeling Power Systems for Protection,	G	А	Е	3	Y	17	0	17		
Theory and Application of Protective Relays	G	А	Е	3		20	0	20		
Conventional, Renewable and Nuclear	II	٨	м	2		20	0	20		
Energy	0	A	IVI	2		20	0	20		
Electric Power Systems I	U	A	M	3	Y	37	0	37		
Electric Power Systems II	U	A	M	3	Y	33	0	33		
Power Electronics	U	A	M	3	Y	48	0	48		
Power System Protection		A	M	5	Ŷ	20	0	20		
University of Wiscon	sın -	- Ma	diso	n		14	0	14		
Advanced Power System Analysis	G	EI	E	3	v	14	0	14		
Dynamics and Controls of AC Drives	G		E	3	Y V	2	2	4		
On Line Control of Down Systems	G	A	E	2	I	0	9	17		
Daruan Electronico Loboratory	G		E	3	v	12	0	12		
Solid State Demo Commission	G	A	E	2	I	12	0	12		
Utility Application of Davier Electronics	G	A ET	E	3	Y V	15	3	18		
Electric Power Processing for Alternative	G	EI	Е	3	ĭ	0	2	8		
Energy Systems	U	Α	E	3		42	0	42		
Electric Power Systems	U	А	Е	3		41	4	45		
Electromechanical Energy Conversion	U	А	Е	3		31	4	35		
Fundamentals of Electrical and Electro- mechanical Power Conversion	U	А	Е	4		38	2	40		
Introduction to Electric Drive Systems	U	А	Е	3	Y	33	12	45		
Power Electronic Circuits	U	А	Е	3	Y	52	6	58		
Transmission Lines and Networks Laboratory	U	А	Е	1	Y	20	0	20		
University of Wisconsin - Milwaukee										
Advanced Power Electronics	G	ΕT	М	3		30	0	30		
Advanced Synchronous Machines	G	ΕT	Е	3		25	0	25		
Analysis of Electric Machines and Drives	G	А	М	3		30	0	30		
Cyber Physical Systems	G	ΕT	Е	3		25	0	25		
Introduction to Smart Grid Technology	G	ΕT	Е	3		25	0	25		
Nonlinear Systems Analysis	G	ΕT	Е	3		30	0	30		
Power Electronics	G	А	М	3		39	0	39		
Power System Reliability and Cybersecurity	G	А	Е	3		25	0	25		
Renewable Energy Systems	G	ET	М	3		30	0	30		
Robust Controls	G	ΕT	Е	3		30	0	30		
Electric Power Systems	U	Т	Е	3		30	0	30		
Electromechanical Energy Conversion	U	Т	М	3	Y	30	0	30		
University of W	/yon	ning								
Electrical Power Quality (EE5885)	G	ΕT	Е	3		18	0	18		
Power Engineering (EE5700)	G	ET	Е	3		18	0	18		

Course Title	Level	Offered	Requirement	Credit Hours	Lab	Enrolled Students			
						On-Campus	Distance Ed.	Total	
Signal Processing for Power Systems	G	ET	Е	3		18	0	18	
Wide Area Monitoring for Power Systems	G	EТ	Е	3		18	0	18	
(EE5885) Electric Power Quality (EE 4800)	U	SD	E	3		24	0	24	
Electrodynamics (EE4550)	U	SP	Е	3		18	0	18	
Electromechanics (EE3510)	Ŭ	A	M	4	Y	24	0	24	
Power System Analysis (EE4510)	U	ΕT	Е	3		18	0	18	
Valparaiso Un	ivers	sity	,						
Power Electronics	U	ΕT	Е	3		20	0	20	
Virginia Polytechnic Institute	e and	d Sta	ite U	nive	ersity	7		-	
Advanced Alternative Energy Systems	G	Α	Е	3		14	0	14	
Advanced Instrumentation in Power Systems	G	ΕT	Е	3		10	0	10	
Advanced Topics in Power	G	А	Е	3		12	2	14	
Computational Methods in Power Engineering	G	ΕT	Е	3		12	1	13	
Electric Machines and Transients	G	ΕT	Е	3		18	4	22	
Power System Operation and Control	G	А	Е	3		12	0	12	
Power Systems Planning	G	ΕT	Е	3		20	0	20	
Alternative Energy	U	А	Е	3		36	0	36	
Design in Power Engineering	U	Т	Е	3		22	0	22	
Introduction to Power Engineering	U	Т	М	3		100	0	100	
Power Electronics	U	А	Е	3		35	0	35	
Power Laboratory	U	Т	М	1	Y	100	0	100	
Power System Analysis and Control	U	Α	Е	3		25	0	25	
Power System Protection	U	Α	Е	3		18	0	18	
Protection Lab	U	Α	Е	1	Y	7	0	7	
Washington State University									
Advanced Topics	G	SP	E	3		8	0	8	
Analysis of Power System	G	A	E	3		15	10	25	
High Voltage Engineering	G	SP	E	3		0	2	2	
Power System Applications of Power	G	EI	Е	3		0	1	1	
Electronics Power System Economics and Electricity	G	ET	E	3		5	0	5	
Markets	G	EI	Е	5		0	9	9	
Power Systems Stability and Control	G	Α	E	3		12	0	12	
Protection of Power Systems II	G	ET	E	3		8	0	8	
Critical Infrastructure Security	U	A	E	3		7	0	7	
Electrical Power Systems	U	1	м	5		68	0	68	
Internship in Electrical Industry	U	A	E	1		5	0	5	
Performance of Power Systems	U	A	E	3		34 42	2	34 44	
Power Electronics	U	Δ	E	3		17	0	17	
Power Systems Lab	U	A	E	3	Y	48	0	48	
Protection of Power Systems I	U	A	E	3		20	8	28	
Protective Relay Lab	Ū	A	E	2	Y	10	0	10	
Renewable Energy	Ŭ	A	E	3	-	34	0	34	
Topics	U	SP	Е	3		6	0	6	
Wayne State U	nive	rsity							
Advanced Energy Storage System	G	Т	Е	4		67	0	67	
Alternative Energy Sources and Energy	G	А	Е	4		24	0	24	
Conversions Energy Systems Engineering	G	Δ	F	4		33	0	33	
Modeling and Control of Electric Vehicle	c		M	4	-	55	0	55	
Powertrain	G	A	M	4		50	U	56	
Power Electronics and Control	G	Α	Е	4		45	0	45	
Advanced Energy Storage System	U	Т	E	4		67	0	67	
Conversions	U	A	E	4		24	0	24	
Energy Systems Engineering	U	А	Е	4		33	0	33	

Course Title	Level	Offered	Requirement	Credit Hours	Lab	Enrolled Students		
						On-Campus	Distance Ed.	Total
Modeling and Control of Electric Vehicle	U	А	М	4		56	0	56
Power Electronics and Control	U	А	Е	4		45	0	45
Special Topic-Smart Grid	U	А	Е	4		10	0	10
West Virginia U	nive	rsity	/					
Advanced Distribution Power System	G	ET	Е	3		5	0	5
Advanced Electrical Machinery	G	Α	Е	3		14	0	14
Computer Applications in Power System Analysis	G	А	Е	3		9	0	9
HVDC Transmission	G	SP	Е	3		3	0	3
Protection of Power Systems	G	ΕT	Е	3		6	0	6
Real Time Control of Power System	G	ΕT	Е	3		5	0	5
Electric Power Distribution System	U	Α	Е	3		10	0	10
Electromechanical Energy Conversion and Energy Systems	U	А	М	3	Y	56	0	56
Power Electronics	U	А	Е	3		29	0	29
Power Systems Analysis	U	А	Е	3		12	0	12
West Virginia University Ins	stitu	te of	Tec	hno	logy			
Alternative Energy Resources	U	А	Е	3		15	0	15
Electromagnetic Energy Conversion Systems	U	А	М	4	Y	15	0	15
Introduction to Power Electronics	U	А	Е	3		10	0	10
Power System Analysis	U	А	М	3		15	0	15
Protective Relaying	U	А	Е	3		5	0	5
Western Carolina	Uni	versi	ity					
Advanced Power System Analysis	G	ΕT	М	3		7	0	7
Electric Power Systems	U	SP	Μ	3		14	0	14
Power Electronics	U	Α	М	3		10	0	10
Wichita State U	nive	rsity			_		0	
Electric Power Distribution	G	ET ET	E	3		25	0	25
	G	E1 ET	E	2		25	0	25
Markate	G	E1 FT	E	3		20	0	20
Motors and Drives	G	FT	F	3	v	18	0	18
Operation & Control	G	ET	E	3		20	0	20
Protection	G	ET	E	3		20	0	20
Reliability	G	ET	E	3		20	0	20
Smart Grid	G	ЕT	Е	3		30	0	30
Electric Machinery and Power Systems	U	А	М	4	Y	84	0	84
Electric Power Systems Analysis I	U	А	Е	3		35	0	35
Electric Power Systems Analysis II	U	А	Е	3		25	0	25
Power Electronics	U	А	Е	4	Y	60	0	60
Smart Grids	U	ΕT	Е	3		30	0	30
Worcester Polytech	nic	Insti	tute					
Advanced Applications in Protective Relaying	G	А	Е	3		0	17	17
Capstone Project in Power Systems	G	А	Е	3		23	0	23
Electromechanical Energy Conversion	G	Т	Е	3		16	25	41
Power Distribution	G	SP	Е	3		27	24	51
Power System Analysis	G	SP	М	3		19	48	67
Power System Dynamics	G	Т	Е	3		18	18	36
Power System Operation and Planning	G	А	Е	3		0	24	24
Power System Protection and Control	G	А	Е	3		0	10	10
Power Transmission	G	А	Е	3		0	10	10
Protective Relaying	G	Т	Е	3		28	18	46
Transients in Power Systems	G	SP	Е	3		32	33	65
Electrical Energy Conversion	U	Α	Е	3		35	0	35
Introduction to Contemporary Electric Power Systems	U	Α	Е	3		45	0	45
Power Electronics	U	А	Е	3	Y	35	0	35

ATTACHMENT: 2015-2016 PEEC ONLINE SURVEY TEXT

Text of the 2015-2016 IEEE PES Power Engineering Education Committee (PEEC) Survey (with links removed)

This document has been prepared to help respondents to the 2015-2016 PEEC Survey compile the information needed to complete the online survey. This document cannot be used to submit a response to the survey.

Objectives: The objectives of this survey are to gather information about curriculum and faculty from electrical engineering, four year institutions in the U.S. and Canada (1) to promote power engineering education through an easy-to-access web location with information on power engineering education opportunities, (2) to facilitate advancement in power engineering education, and (3) to assess the state of power engineering education and research from a national perspective. The educational focus is on electrical engineering students. Information from the survey will be available on the PES website (see PES university programs web page with results from the 2013-2014 PEEC Survey), and in power engineering education publications.

Designated Representative: Only the designated respondent for your institution may submit survey data. You are the designated respondent if you are the first person to work on the survey for your institution or if you submitted data for your institution in the 2013-2014 PEEC Survey (click to see the list of designated respondents as of July 1). You can request to become the designated respondent for an institution that submitted data in the last PEEC survey by sending an email to peecsurvey@ieee.org. You are automatically the designated respondent if you begin the survey and your institution did not submit a response to the previous survey.

Adding a University: If you start the survey and find that your institution is not listed, send an email to peecsurvey@ieee.org requesting that it be added. You will be notified if your institution is eligible. Afterwards you will be able to start working on the survey.

Institution Eligibility: Four year institutions in the U.S. and Canada awarding accredited (i.e., ABET accreditation in the U.S.) degrees in electrical engineering. Institutions only offering degrees in electrical engineering technology will not be included in this survey. Institutions offering both types of degrees may be included, but responses in this survey should be limited to faculty, education, and research activities in the electrical engineering area.

Survey Text and Worksheets: Documents have been prepared to help respondents to the 2015-2016 PEEC Survey compile the information needed to respond to the online survey. These documents cannot be used to submit a response to the survey. The documents are: (1) Text of the entire survey [Survey text in PDF] and (2) Worksheets that can be given to colleagues to help the designated respondent collect the necessary data [Worksheets in PDF] [Worksheets in MS Word format].

What Data to Include: Instruction and research topics underlying this survey focus on electric power engineering associated with grid operations, planning and maintenance. Power electronics is included. Other engineering topics, such as communications and IT, are included to the extent they address power engineering challenges. Please remember that this survey is <u>not</u> looking for data on your entire engineering program.

Reporting Period: The data should be for the academic year of July 1, 2015 to June 30, 2016.

More Information: Send an email to peecsurvey@ieee.org

Log-in

- Email
- Password

If you do not have an account and intend to be the designated respondent for your university, please register now.

If you forgot your password and need to reset it, click here.

Need login assistance? Send an email to peecsurvey@ieee.org.

Respondents to 2013-2014 Survey

If your university responded to the 2013-2014 Survey, some data has been pre-populated to make it easier for you to complete this 2015-2016 Survey. Please check the data for accuracy and completeness. Not all data have been pre-populated and some of the data may be out-of-date. Also, delete data that are no longer relevant, such as for faculty who have moved or for courses that are no longer offered. The data you submit provide important insights into your power program so do make sure it is accurate.

Survey

Only the designated respondent for your institution may submit survey data. You are the designated respondent if you are starting the survey for your institution or if you submitted data for your institution in the 2013-2014 PEEC survey. You can request to become the designated respondent by sending an email to peecsurvey@ieee.org. You can also ask who the current designated respondent is by emailing peecsurvey@ieee.org.

If you are returning to continue work on your survey, please identify your country, state and institution again to proceed.

- Select your Institution's country
- Select your Institution's state/province
- Name of your Institution

Click here if your institution is not listed.

Survey Part 1: General Information

Required fields throughout this survey are marked with an asterisk (*)

REMINDER: Data has been pre-populated in multiple fields if your university responded to the 2013-2014 Survey. Please edit each entry with the latest information and check all data for accuracy and completeness!

Survey Contact

- *First Name
- *Last Name
- *Email
- *Work Phone (example: 999-999-9999)

Program Contact

- *First Name
- *Last Name
- *Email
- *Work Phone (example: 999-999-9999)

General Information About Your Power Program

*College/School Name:

For example, College of Engineering. Please do <u>not</u> insert your university's name. (No abbreviations or acronyms)

Name:

*Lead Department's Name

For example, Department of Electrical and Computer Engineering. (No abbreviations or acronyms)

• Name:

Power Research Centers or Related Organizations in Power

Enter the full name of the organization. Do not use abbreviations or acronyms.

• Name:

University Calendar

- Semester
- Quarter
- Other

Survey Part 2A: Power Faculty and Staff Information

REMINDER: Data has been pre-populated in multiple fields if your university responded to the 2013-2014 Survey. Please edit each entry with the latest information and check all data for accuracy and completeness!

The objective of this information is to identify personnel resources used in higher education for power and energy engineering. The personnel includes faculty, adjunct professors, and other non-faculty instructors, but excludes TA's and RA's. Listed personnel must spend time delivering course instruction. Individuals who do not teach should not be included.

Faculty and Staff Information (for each individual)

- *First Name
- *Last Name
- *Email (for PES administrative use only)
- *Department (Use no abbreviations; for example, enter Department of Electrical Engineering):
- *Rank/Title
 - Professor
 - Associate Professor
 - Assistant Professor (tenure track)
 - Adjunct Professor
 - o Emeritus Professor
 - Instructor/Lecturer (non-tenure track)
- *Highest Degree:
 - o PhD
 - o Master's
 - o Bachelors
 - o Other
 - *IEEE PES Member
 - o Select: Yes/No
- IEEE Fellow
 - o Select: Yes/No
 - *Total Career Job Experience in Years
 - Academic: (enter number)
 - o Power Industry: (enter number)
 - Other Industry: (enter number)
 - Total Career Years: (enter sum of above)
 - *Academic Year Appointment
 - o Full-time
 - o Part-time
- Areas of Instruction in the Last Two Years (select all that apply hold Ctrl/Cmd key to select multiple areas)
 - o Distribution System Analysis
 - Electric Machinery
 - Energy Development & Power Generation
 - Energy Storage & Stationary Battery
 - o Intelligent Grid
 - o Other
 - Power Electronics
 - Power Engineering Education
 - Power System Communications & Cybersecurity
 - o Power System Computation and Analysis
 - o Power System Dynamic Performance

- Power System Economics
- Power System Instrumentation and Measurements
- Power System Operations
- Power System Planning and Implementation
- Power System Relaying
- o Reliability, Risk and Probability Applications
- Renewable Generation
- o Substation Automation
- o Switchgear, Surge Protection Devices
- o Transformers
- If other, please specify:
- Current Research Interests (select all that apply hold Ctrl/Cmd key to select multiple areas)
 - o Distribution System Analysis
 - o Electric Machinery
 - Energy Development & Power Generation
 - Energy Storage & Stationary Battery
 - o Intelligent Grid
 - o Power Electronics
 - o Power Engineering Education
 - Power System Communications & Cybersecurity
 - Power System Computation and Analysis
 - Power System Dynamic Performance
 - Power System Economics
 - o Power System Instrumentation and Measurements
 - Power System Operations
 - Power System Planning and Implementation
 - Power System Relaying
 - o Reliability, Risk and Probability Applications
 - Renewable Generation
 - Substation Automation
 - Switchgear, Surge Protection Devices
 - o Transformers
 - If other, please specify:
Survey Part 2B: General Questions about Faculty and Staff

REMINDER: Data has been pre-populated in multiple fields if your university responded to the 2013-2014 Survey. Please edit each entry with the latest information and check all data for accuracy and completeness!

- *How many full-time personnel who taught in the power area left your institution, whether due to retirement or other reasons, during the reporting period (July 2015-June 2016?
 - Select: 0,1,2,3,4,5,6 or more
- *How many full-time personnel who teach in the power area were hired by your institution during the reporting period (July 2015 July 2016)?
 - Select: 0,1,2,3,4,5,6 or more
- *Either assuming a typical retirement age of 65 or using the retirement criteria at your school, how many personnel listed in this survey are within the given number of years until being retirement eligible?
 - Retirement eligible now: (enter number),
 - o 1-5 years: (enter number),
 - 6-10 years: (enter number)
- *Did power faculty participate in any power-related outreach events designed to attract K-12 students into the power engineering career field or to help K-12 teachers?
 - o Select: Yes/No

Survey Part 3: Undergraduate and Graduate Programs

REMINDER: Data has been pre-populated in multiple fields if your university responded to the 2013-2014 Survey. Please edit each entry with the latest information and check all data for accuracy and completeness!

- *What are your institution's undergraduate power and energy engineering options? (select all that are relevant)
 - Mandatory courses for all students
 - o Mandatory courses for students in a special track, minor, certificate, etc.
 - Elective courses
 - Special track (give title without any abbreviations
 - Minor (give title without any abbreviations)
 - Certificate offering (give title without any abbreviations)
 - Other (give title without any abbreviations)
- *Undergraduate Cooperative Program
 - Not available
 - Available (optional)
 - o Available (mandatory)

Master's Power Degree Options

- *Does your university offer a Master's degree that would help students prepare for a career in electric power engineering?
 - Select: Yes/No
- *Does your university offer an online Master's degree that would help students prepare for a career in electric power engineering?
 - o Select: Yes/No

Doctoral Power Degree Options

- *Does your university offer a Doctoral degree that would help students prepare for a career in electric power engineering whether in industry, government or academia?
 - o Select: Yes/No
- *Does your university offer an online Doctoral degree that would help students prepare for a career in electric power engineering whether in industry, government or academia?
 - o Select: Yes/No

Survey Part 4: Course Offerings

REMINDER: Data has been pre-populated in multiple fields if your university responded to the 2013-2014 Survey. Please edit each entry with the latest information and check all data for accuracy and completeness!

Undergraduate Power Course Offerings

List the courses that are in the curriculum to help students prepare for a career in power engineering. Including such specialties as nuclear engineering courses is not encouraged. For the course title, provide the complete title for the course with no abbreviations (for example, a course title could be Power Systems Analysis). If there are no students of a type (example: no Distance Education Students), please enter 0. Exclude courses that have not been taught since the 2011-2012 academic year.

Please do not just give the course numbers for the course titles. Course numbers are not requested.

Courses

- Course Title
- Offering Cycle
 - o Twice per year
 - o Annually
 - Every two years
 - Special
- Academic Year (AY) Last Offered
 - o 2015-2016
 - o 2014-2015
 - o **2013-2014**
 - o **2012-2013**
- Requirement
 - Select: Mandatory or Elective
- Course Credit Hours
- Lab (Select: Yes/No)
- Number of Classroom Students: (enter number)
- Number of Distance Education Students: (enter number)
- Total Number of Students (automatically calculated)

Graduate Power Course Offerings

List the courses that are in the curriculum to help students prepare for a career in power engineering. Including such specialties as nuclear engineering courses is <u>not</u> encouraged. For the course title, provide the complete title for the course with no abbreviations. If there are no students of a type (example: no Distance students), please enter 0.

Please do not just give the course numbers for the course titles. Course numbers are not requested.

Courses

- Course Title
- Offering Cycle
 - o Twice per year
 - o Annually
 - Every two years
 - o Special
- Academic Year (AY) Last Offered
 - o 2015-2016

- o 2014-2015
- o **2013-2014**
- o **2012-2013**
- Requirement
 - Select: Mandatory or Elective
- Course Credit Hours
- Lab (Select: Yes/No)
- Number of Classroom Students: (enter number)
- Number of Distance Education Students: (enter number)
- Total Number of Students (automatically calculated)

Survey Part 5: Student Estimates

REMINDER: Data has been pre-populated in multiple fields if your university responded to the 2013-2014 Survey. Please edit each entry with the latest information and check all data for accuracy and completeness!

The principal objective of this part of the survey is to assess the overall trends in the U.S. and Canada in student interest in power engineering and to estimate the number of graduating students who are entering the power engineering career field whether in industry, government or academia. Provide the best estimates that you can of the number of degrees conferred and enrollments for the indicated electrical engineering students.

To estimate the number of undergraduates likely to pursue entry-level positions in electric power and energy engineering, consider the undergraduate enrollment in your elective course on introduction to power systems analysis.

- *Estimated number of undergraduate electrical engineering students graduating during the reporting year (July 2015 - July 2016) who were likely to pursue positions in electric power engineering: (enter number)
- *Estimated number of Master's degrees conferred during reporting year (July 2015 July 2016) for electrical engineering students who were likely to pursue positions in electric power engineering: (enter number)
- *Estimated number of Doctoral degrees conferred during reporting year (July 2015 July 2016) for electrical engineering students who were likely to pursue positions in electric power engineering (industry, government or academia): (enter number)

Number of Enrolled Domestic and International Students

For the following questions, a "Domestic" student is a student who is a citizen of or permanent resident in your country.

- *Number of enrolled electrical engineering <u>domestic</u> students preparing for a career in power engineering: (enter numbers for Master's Full Time, Master's Part Time, Doctoral Full Time, and Doctoral Part Time)
- *Number of enrolled electrical engineering <u>international</u> students preparing for a career in power engineering: (enter numbers for Master's Full Time, Master's Part Time, Doctoral Full Time, and Doctoral Part Time)
- *Estimated % of enrolled undergraduate electrical engineering students who are Domestic: (enter number for %)

Survey Part 6: Research

REMINDER: Data has been pre-populated in multiple fields if your university responded to the 2013-2014 Survey. Please edit each entry with the latest information and check all data for accuracy and completeness!

*Total research expenditures during reporting period (July 2015 - July 2016)

Please enter the estimated expenditures (not awards) in dollars (\$) by the tenured and untenured professional faculty entered in this survey. Include university overhead charges. (Example: Use numeric values such as \$42000. Do not use commas or alpha values such as \$1M.)

- Government
 - non-equipment (enter number in \$)
 - equipment (enter number in \$)
- Domestic Utility
 - o non-equipment (enter number in \$)
 - equipment (enter number in \$)
- Other Industry
 - non-equipment (enter number in \$)
 - equipment (enter number in \$)

*Principal Areas of Current Research (select all that apply - hold Ctrl/Cmd key to select multiple areas):

- Distribution System Analysis
- Electric Machinery
- Energy Development & Power Generation
- Energy Storage & Stationary Battery
- Intelligent Grid
- Power Electronics
- Power Engineering Education
- Power System Communications & Cybersecurity
- Power System Computation and Analysis
- Power System Dynamic Performance
- Power System Economics
- Power System Instrumentation and Measurements
- Power System Operations
- Power System Planning and Implementation
- Power System Relaying
- Reliability, Risk and Probability Applications
- Renewable Generation
- Substation Automation
- Switchgear, Surge Protection Devices
- Transformers
- If other, please specify:

*What is the general consensus among the faculty at your institution about the outlook for new funding for university power systems research in your country over the next three years?

- Rising
- Stable
- Declining
- Unsure
- Not applicable

*What is the general consensus among the faculty at your institution about the outlook for new funding for university power systems research in your country over the next ten years?

- Rising
- Stable
- Declining
- Unsure
- Not applicable

Next Steps in Completing the PEEC Survey

You may now either return to the previous page, save your work and exit, or submit your survey for review. If you save your work and exit, you will be able to return to make additional edits after you login. If you submit your survey, you will be done. No additional editing will be possible. Click on your choice below.

- Previous page
- Save and Exist without Submitting
- Submit Survey for Review