SOLUTION OF EXAM 01 Subject: CONTROL THEORY

Exercise 1 (5 marks):

- a) (1.5 marks)
 - i. (0.5 marks) Consider the Polynomial: $\Lambda(z) = T^2 z^3 + 2T z^2 + z = 1 z^4 + z^3$

$$A(s) = T_2^2 s^3 + 2T_2 s^2 + s + k_1 k = 4s^3 + 4s^2 + s + 0.5k_1$$

ii. (0.5đ) Routh Table

4	1	
4	$0.5k_{1}$	
$4 - 2k_1$		
4		
$0.5k_{1}$		
We obtain $0 < k_1 < 2$		

1

iii. (0.5 đ)

Because of stable closed loop system, there exists the Limitation

$$\begin{split} & \underset{t \to \infty}{\text{Lim}} \left(u(t) - y(t) \right) = \underset{s \to 0}{\text{Lim}} s\left(U(s) - Y(s) \right) = \underset{s \to 0}{\text{Lim}} sU(s) \left(1 - \frac{k_2 k_1 G(s)}{1 + k_1 G(s)} \right); \\ & u(t) = 1(t) \text{ và } \underset{s \to 0}{\text{Lim}} G(s) = +\infty \text{ , we obtain } \underset{t \to \infty}{\text{Lim}} \left(u(t) - y(t) \right) = 1 - k_2 \end{split}$$

We imply $k_2 = 1;$

b) (2 marks)

i. (1 mark)
$$G(s) = \frac{k}{s(1+T_2s)^2}$$

 $a = 4$: $T_I = T_1 + 4T_2$, $k_p = \frac{T_I}{8kT_2^2}$, $T_D = \frac{4T_1T_2}{T_I}$, $T = 4T_2$ with
 $k = 0.5$, $T_1 = T_2 = 2$ we obtain $T_I = 10$, $k_p = \frac{5}{8}$, $T_D = 1.6$, $T = 8$

ii. (1 mark) Stability reserve of closed system does not depend on $R_2(s)$. We need to obtain the open system with transfer function:

$$\begin{split} G_h\left(s\right) &= R_1\left(s\right)G\left(s\right) = k_p\left(1 + \frac{1}{T_Is} + T_Ds\right) \cdot \frac{k}{s(1 + T_1s)(1 + T_2s)} \\ &= \frac{k_p(1 + T_As)(1 + T_Bs)}{T_Is} \cdot \frac{k}{s(1 + T_1s)(1 + T_2s)} = \frac{k_pk(1 + T_Bs)}{T_Is^2(1 + T_2s)} \end{split}$$

We select $T_A = T_1$ with $T_A + T_B = T_I$, $T_A T_B = T_I T_D$, $T_B = 4T_2 > T_2$, we obtain the Bode diagram of open system as follows.

$$\begin{split} &\omega_c = \frac{1}{\sqrt{T_B T_2}} \,. \\ &T_B = 8, \ T_1 = T_2 = 2 \text{ we imply } \omega_c = \frac{1}{4}. \text{ Stability reserve of closed system } \Delta \varphi: \\ &\Delta \varphi = -\pi - \varphi_c = -\pi - \arccos_h(j\omega_c) = \arctan(\omega_c T_2) - \arctan(\omega_c T_B) \\ &\Delta \varphi = \arctan\left(\frac{1}{2}\right) - \arctan(2) \end{split}$$

c) (1.5 marks)

- i. (0.5 marks) Using the Theorem "The input is sinusoidal signal, the output comes to sinusoidal signal depending on $G_k(j\omega)$ ";
- ii. (0.5 marks) If $R_1(s)$ is PI Controller then we do not obtain $G_k(j\omega) = 1$;

iii. (0.5 marks) $R_1(s) = \frac{a}{s^2 + \omega^2} (a > 0)$

Exercise 2

a) (1 marks) we denote

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \underline{c} = \begin{pmatrix} a \\ 0 \\ 1 \end{pmatrix} \Rightarrow \begin{cases} \frac{d\underline{x}}{dt} = A\underline{x} + B\underline{u} \\ y = \underline{c}^T \underline{x} \end{cases}$$

i. (0.5 marks)

The equivalent polynomial of matrix A will be:

det $(sI - A) = (s - 1)(s^2 - 3s + 1)$. This system is not stable;

- ii. (0.5 marks) Rank $(B, AB, A^2B) = 3 \Rightarrow$ This system is controllable
- b) (1 marks)

i. **(0.5 marks)**
$$N = \begin{pmatrix} \underline{c}^T \\ \underline{c}^T A \\ \underline{c}^T A^2 \end{pmatrix} = \begin{pmatrix} a & 0 & 1 \\ a & 1 & a+1 \\ a & a+3 & 2a+2 \end{pmatrix}$$

ii. **(0.5 marks)** det $(N) = -a(a^2 + a - 1)$

In order to obtain the observability property: $det(N) \neq 0 \Leftrightarrow a \neq 0; \frac{-1 \pm \sqrt{5}}{2}$

c) (2 marks)

i. (1 marks) State Feedback control is $\underline{u} = \underline{\omega} - R\underline{x}$ với $R = (r_1 \quad r_2 \quad r_3)$ sastisfy eigen values of $(A - \underline{b}\underline{r}^T)$ inside (-2,0) and we select all of eigen values being -1), we obtain based on Ackermann

- $\begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} M^{-1} \Phi_R(A) = \begin{bmatrix} -4, -24, 11 \end{bmatrix}$
- ii. (1 marks) Observer
 - i. (0.5 marks) \underline{x} is the root of difference equation

$$\frac{d\underline{x}}{dt} = A\underline{x} + \underline{b}u + L\left(y - \underline{c}^T\underline{x}\right)$$

ii. (0.5 marks) Find matrix L to obtain that $(A - L\underline{c}^T)$ have all eigenvalues being -3 (faster than e^{-2t}). Using Ackermann:

$$L = \Phi_{L}(A)N^{-1} \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 28,77,-15 \end{bmatrix}^{T}$$

(1đ) Drawing. The closed system is not controllable because \underline{x} converge to \underline{x}

SOLUTION OF EXAM 02 Subject: CONTROL THEORY

Exercise 1 (5 marks):

- d) (1.5 marks)
- d) (0.5 marks) Consider the Polynomial:

$$A(s) = T_2 s^3 + 2T_2 s^2 + s + k_1 k = s^3 + 2s^2 + s + 10k_1$$

i. (0.5đ) Routh Table

1	1
2	$10k_1$
$2 - 10k_1$	
2	
$10k_{1}$	

We obtain: $0 < k_1 < 0.2$

ii. (0.5 đ)

Because of stable closed loop system, there exists the Limitation

$$\begin{split} & \lim_{t \to \infty} \left(u(t) - y(t) \right) = \lim_{s \to 0} s \left(U(s) - Y(s) \right) = \lim_{s \to 0} s U(s) \left(1 - \frac{k_2 k_1 G(s)}{1 + k_1 G(s)} \right); \\ & \text{Because } u(t) = 1(t) \text{ , we imply } \lim_{s \to 0} G(s) = +\infty \text{ and} \\ & \lim_{t \to \infty} \left(u(t) - y(t) \right) = 1 - k_2, \text{ we obtain } k_2 = 1; \end{split}$$

b) (2 marks)

- i. (1 marks) $G(s) = \frac{k}{s(1+T_2s)^2}$ (a = 4): $T_I = T_1 + 4T_2$, $k_p = \frac{T_I}{8kT_2^2}$, $T_D = \frac{4T_1T_2}{T_I}$, $T = 4T_2$ where k = 10, $T_1 = T_2 = 1$ we obtain $T_I = 5$, $k_p = \frac{1}{16}$, $T_D = 0.8$, T = 4
- i. (1 mark) Stability reserve of closed system does not depend on $R_2(s)$. We need to obtain the open system with transfer function:

$$\begin{split} G_h\left(s\right) &= R_1\left(s\right)G\left(s\right) = k_p\left(1 + \frac{1}{T_Is} + T_Ds\right) \cdot \frac{k}{s(1 + T_1s)(1 + T_2s)} \\ &= \frac{k_p(1 + T_As)(1 + T_Bs)}{T_Is} \cdot \frac{k}{s(1 + T_1s)(1 + T_2s)} = \frac{k_pk(1 + T_Bs)}{T_Is^2(1 + T_2s)} \end{split}$$

We select $T_A = T_1$ with $T_A + T_B = T_I$, $T_A T_B = T_I T_D$, $T_B = 4T_2 > T_2$, we obtain the Bode diagram of open system as follows.

$$\omega_c = \frac{1}{\sqrt{T_B T_2}}$$
.
 $T_B = 8, T_1 = T_2 = 2$ we imply $\omega_c = \frac{1}{4}$. Stability reserve of closed system $\Delta \varphi$:

(1.5 marks)

- a. (0.5 marks) Using the Theorem "The input is sinusoidal signal, the output comes to sinusoidal signal depending on $G_k(j\omega)$ ";
- **b.** (0.5 marks) If $R_1(s)$ is PI Controller then we do not obtain $G_k(j\omega) = 1$;
- ii. (0.5 marks) $R_1(s) = \frac{a}{s^2 + \omega^2} (a > 0)$

Exercise 2

a) (1 marks) we denote

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \underline{c} = \begin{pmatrix} a \\ 0 \\ 1 \end{pmatrix} \Rightarrow \begin{cases} \underline{d\underline{x}} \\ dt \end{cases} = A\underline{x} + B\underline{u} \\ y = \underline{c}^T \underline{x} \end{cases}$$

i. (0.5 marks)
The equivalent polynomial of matrix A will be:
$$det(sI - A) = (s - 1)(s^2 - 3s + 1)$$
. This system is not stable;

ii. (0.5 marks)
$$\operatorname{Rank}(B, AB, A^2B) = 3 \Rightarrow$$
 This system is controllable

i. **(0.5 marks)**
$$N = \begin{pmatrix} \underline{c}^T \\ \underline{c}^T A \\ \underline{c}^T A^2 \end{pmatrix} = \begin{pmatrix} a & 0 & 1 \\ a & 1 & a+1 \\ a & a+3 & 2a+2 \end{pmatrix}$$

ii. **(0.5 marks)** $\det(N) = -a(a^2 + a - 1)$

In order to obtain the observability property: $det(N) \neq 0 \Leftrightarrow a \neq 0; \frac{-1 \pm \sqrt{5}}{2}$

c) (2 marks)

ii.

i. (1 marks) State Feedback control is $\underline{u} = \underline{\omega} - R\underline{x}$ với $R = (r_1 \quad r_2 \quad r_3)$ sastisfy eigen values of $(A - \underline{b}\underline{r}^T)$ inside (-2,0) and we select all of eigen values being -1), we obtain based on Ackermann $[r \quad r \quad r] = [0 \quad 0 \quad 1] M^{-1} \Phi(A) = [A \quad 2A \quad 11]$

$$\begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} M^{-1} \Phi_R(A) = \begin{bmatrix} -4, -24, 11 \end{bmatrix}$$

(1 marks) Observer

(1 marks) Observer i. (0.5 marks) $\underline{\dot{x}}$ is the root of difference equation $\frac{d\underline{\dot{x}}}{dt} = A\underline{\dot{x}} + \underline{b}u + L\left(y - \underline{c}^T\underline{\dot{x}}\right).$ ii. **(0.5 marks)** Find matrix L to obtain that $(A - L\underline{c}^T)$ have all eigenvalues being -3 (faster than e^{-2t}). Using Ackermann: $L = \Phi_L(A)N^{-1} \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 28,77,-15 \end{bmatrix}^T$

(1đ) Drawing. The closed system is not controllable because \underline{x} converge to \underline{x}